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Before we start

• Download the data files here: https://lgatto.github.io/MayInstituteRstatsIntro/RIntro.zip
• A pdf version of the course is available here: https://lgatto.github.io/MayInstituteRstatsIntro/RIntro.

pdf
• An pre-installed cloud-based RStudio session is available here: https://rstudio.cloud/project/332801

Suggested reading

• Points of Significance : Statistics for Biologists

Schedule

Day Time Content
1 1:30 - 3:00pm Lecture: Introduction to statistics (OV)

3:00 - 3:30pm Refreshments
3:30 - 5:00pm R basics and RStudio (LG)
5:00 - 6:00pm R markdown (LG)

2 8:00 - 9:00am Q&A
9:00 -
10:30am

Data Exploration (LG)

10:30 -
11:00am

Refreshments

11:00 -
12:30pm

Data Exploration 2 (LG)

12:30 -
13:30pm

Lunch break

13:30 -
3:00pm

Lecture: Statistical inference (OV)

3:00 - 3:30pm Refreshments
3:30 - 5:00pm Visualisation (LG)
5:00 - 6:00pm Extra practice

3 8:00 - 9:00am Q&A
9:00 -
10:30am

Randomisation, summaries, error bars and confidence intervals (MC)

10:30 -
11:00am

Refreshments

11:00 -
12:30pm

Lecture: sample size, linear regression, categorical data (OV)
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Day Time Content
12:30 -
13:30pm

Lunch break

13:30 -
2:15pm

Linear models and correlation (LG)

2:15 - 3:00pm Introduction to MSnbase (LG)
3:00 - 3:30pm Refreshments
3:30 - 5:00pm Hypothesis testing and categorical data and samples size calculation (MC)
5:00 - 6:00pm Wrap-up

Olga Vitek (OV), Meena Choi (MC), Laurent Gatto (LG)

License

This material, unless otherwise stated, is made available under the Creative Commons Attribution license.

You are free to:

• Share - copy and redistribute the material in any medium or format
• Adapt - remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

No additional restrictions - You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

Credit

Some of the material from day 1 and 2 has been adapted from the Data Carpentry R lessons (see references
in the respective sections), which are also licensed under CC-BY.

https://bioconductor.org/packages/release/bioc/html/MSnbase.html
https://creativecommons.org/licenses/by/4.0/


Chapter 1

Getting started with R and RStudio

Objectives

• Familiarise yourselves with R and RStudio, and how to work with them
• Find help about R
• Install new R packages
• R variables, functions, vectors
• Simple arithmetics and data manipulation
• Learn about R markdown

The first two sections are adapted from the Data Carpentry R for data analysis and visualization material.

1.1 R and RStudio

1.1.1 What is R? What is RStudio?

The term “R” is used to refer to both the programming language and the software that interprets the scripts
written using it.

RStudio is currently a very popular way to not only write your R scripts but also to interact with the R
software. To function correctly, RStudio needs R and therefore both need to be installed on your computer.

1.1.2 Why learn R?

R does not involve lots of pointing and clicking, and that’s a good thing

The learning curve might be steeper than with other software, but with R, the results of your analysis does
not rely on remembering a succession of pointing and clicking, but instead on a series of written commands,
and that’s a good thing! So, if you want to redo your analysis because you collected more data, you don’t
have to remember which button you clicked in which order to obtain your results, you just have to run your
script again.

Working with scripts makes the steps you used in your analysis clear, and the code you write can be inspected
by someone else who can give you feedback and spot mistakes.

Working with scripts forces you to have a deeper understanding of what you are doing, and facilitates your
learning and comprehension of the methods you use.

7
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R code is great for reproducibility

Reproducibility is when someone else (including your future self) can obtain the same results from the same
dataset when using the same analysis.

R integrates with other tools to generate manuscripts from your code. If you collect more data, or fix a
mistake in your dataset, the figures and the statistical tests in your manuscript are updated automatically.

An increasing number of journals and funding agencies expect analyses to be reproducible, so knowing R will
give you an edge with these requirements.

R is interdisciplinary and extensible

With 10,000+ packages that can be installed to extend its capabilities, R provides a framework that allows
you to combine statistical approaches from many scientific disciplines to best suit the analytical framework
you need to analyze your data. For instance, R has packages for image analysis, GIS, time series, population
genetics, and a lot more.

R works on data of all shapes and sizes

The skills you learn with R scale easily with the size of your dataset. Whether your dataset has hundreds or
millions of lines, it won’t make much difference to you.

R is designed for data analysis. It comes with special data structures and data types that make handling of
missing data and statistical factors convenient.

R can connect to spreadsheets, databases, and many other data formats, on your computer or on the web.

R produces high-quality graphics

The plotting functionalities in R are endless, and allow you to adjust any aspect of your graph to convey
most effectively the message from your data.

R has a large community

Thousands of people use R daily. Many of them are willing to help you through mailing lists and websites
such as Stack Overflow.

Not only is R free, but it is also open-source and cross-platform

Anyone can inspect the source code to see how R works. Because of this transparency, there is less chance for
mistakes, and if you (or someone else) find some, you can report and fix bugs.

1.1.3 Knowing your way around RStudio

Let’s start by learning about RStudio, which is an Integrated Development Environment (IDE) for working
with R.

The RStudio IDE open-source product is free under the Affero General Public License (AGPL) v3. The
RStudio IDE is also available with a commercial license and priority email support from RStudio, Inc.

https://stackoverflow.com/
https://www.rstudio.com/
https://www.gnu.org/licenses/agpl-3.0.en.html
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Figure 1.1: RStudio interface screenshot

We will use RStudio IDE to write code, navigate the files on our computer, inspect the variables we are going
to create, and visualize the plots we will generate. RStudio can also be used for other things (e.g., version
control, developing packages, writing Shiny apps) that we will not cover during the workshop.

RStudio is divided into 4 “Panes”: the Source for your scripts and documents (top-left, in the
default layout), the R Console (bottom-left), your Environment/History (top-right), and your
Files/Plots/Packages/Help/Viewer (bottom-right). The placement of these panes and their content
can be customized (see menu, Tools -> Global Options -> Pane Layout). One of the advantages of using
RStudio is that all the information you need to write code is available in a single window. Additionally, with
many shortcuts, autocompletion, and highlighting for the major file types you use while developing in R,
RStudio will make typing easier and less error-prone.

1.1.4 Getting set up

It is good practice to keep a set of related data, analyses, and text self-contained in a single folder, called the
working directory. All of the scripts within this folder can then use relative paths to files that indicate
where inside the project a file is located (as opposed to absolute paths, which point to where a file is on a
specific computer). Working this way makes it a lot easier to move your project around on your computer
and share it with others without worrying about whether or not the underlying scripts will still work.

RStudio provides a helpful set of tools to do this through its “Projects” interface, which not only creates
a working directory for you but also remembers its location (allowing you to quickly navigate to it) and
optionally preserves custom settings and open files to make it easier to resume work after a break. Below, we
will go through the steps for creating an “R Project” for this tutorial.

• Under the File menu, click on New project, choose New directory, then Empty project
• Enter a name for this new folder (or “directory”), and choose a convenient location for it. This will be

your working directory for the rest of the day (e.g., rstats)
• Click on Create project
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Figure 1.2: How it should look like at the beginning of this lesson

• Under the Files tab on the right of the screen, click on New Folder and create a folder named data
within your newly created working directory (e.g., rstats/data)

• Create a new R script in your working directory, calling it e.g., rstats-script.R.

Your working directory should now look like this:

Challenge

Add the provided data files (iPRG_example_runsummary.csv, TCGA_sample_information.csv,
iprg.rda and iprg2.rda) to your data directory.

1.1.5 Organizing your working directory

Using a consistent folder structure across your projects will help keep things organized, and will also make
it easy to find/file things in the future. This can be especially helpful when you have multiple projects. In
general, you may create directories (folders) for scripts, data, and documents.

• data/ Use this folder to store your raw data and intermediate datasets you may create for the need of
a particular analysis. For the sake of transparency and provenance, you should always keep a copy of
your raw data accessible and do as much of your data cleanup and preprocessing programmatically (i.e.,
with scripts, rather than manually) as possible. Separating raw data from processed data is also a good
idea. For example, you could have files data/raw/prots_plot1.txt and ...plot2.txt kept separate
from a data/processed/prots.csv file generated by the scripts/01_preprocess_prots.R script.

• documents/ This would be a place to keep outlines, drafts, and other text.
• scripts/ This would be the location to keep your R scripts for different analyses or plotting, and

potentially a separate folder for your functions (more on that later).

You may want additional directories or subdirectories depending on your project needs, but these should
form the backbone of your working directory. For this workshop, we will need a data/ folder to store our raw
data, and we will create later a data_output/ folder when we learn how to export data as CSV files.

https://en.wikipedia.org/wiki/Provenance
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Figure 1.3: Example of a working directory structure

1.2 Interacting with R

The basis of programming is that we write down instructions for the computer to follow, and then we tell the
computer to follow those instructions. We write, or code, instructions in R because it is a common language
that both the computer and we can understand. We call the instructions commands and we tell the computer
to follow the instructions by executing (also called running) those commands.

There are two main ways of interacting with R: by using the console or by using script files (plain text files
that contain your code). The console pane (in RStudio, the bottom left panel) is the place where commands
written in the R language can be typed and executed immediately by the computer. It is also where the
results will be shown for commands that have been executed. You can type commands directly into the
console and press Enter to execute those commands, but they will be forgotten when you close the session.

Because we want our code and workflow to be reproducible, it is better to type the commands we want in the
script editor, and save the script. This way, there is a complete record of what we did, and anyone (including
our future selves!) can easily replicate the results on their computer.

RStudio allows you to execute commands directly from the script editor by using the Ctrl + Enter shortcut
(on Macs, Cmd + Return will work, too). The command on the current line in the script (indicated by the
cursor) or all of the commands in the currently selected text will be sent to the console and executed when
you press Ctrl + Enter.

At some point in your analysis you may want to check the content of a variable or the structure of an object,
without necessarily keeping a record of it in your script. You can type these commands and execute them
directly in the console. RStudio provides the Ctrl + 1 and Ctrl + 2 shortcuts allow you to jump between
the script and the console panes.

If R is ready to accept commands, the R console shows a > prompt. If it receives a command (by typing,
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Figure 1.4: RStudio help interface

copy-pasting or sent from the script editor using Ctrl + Enter), R will try to execute it, and when ready,
will show the results and come back with a new > prompt to wait for new commands.

If R is still waiting for you to enter more data because it isn’t complete yet, the console will show a + prompt.
It means that you haven’t finished entering a complete command. This is because you have not ‘closed’
a parenthesis or quotation, i.e. you don’t have the same number of left-parentheses as right-parentheses,
or the same number of opening and closing quotation marks. When this happens, and you thought you
finished typing your command, click inside the console window and press Esc; this will cancel the incomplete
command and return you to the > prompt.

1.3 Seeking help

Use the built-in RStudio help interface to search for more information on R
functions

One of the most fastest ways to get help, is to use the RStudio help interface. This panel by default can
be found at the lower right hand panel of RStudio. As seen in the screenshot, by typing the word “Mean”,
RStudio tries to also give a number of suggestions that you might be interested in. The description is then
shown in the display window.

I know the name of the function I want to use, but I’m not sure how to use it

If you need help with a specific function, let’s say barplot(), you can type:
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?barplot

If you just need to remind yourself of the names of the arguments, you can use:
args(lm)

I want to use a function that does X, there must be a function for it but I don’t
know which one. . .

If you are looking for a function to do a particular task, you can use the help.search() function, which
is called by the double question mark ??. However, this only looks through the installed packages for help
pages with a match to your search request
??kruskal

If you can’t find what you are looking for, you can use the rdocumentation.org website that searches through
the help files across all packages available.

Finally, a generic Google or internet search “R <task>” will often either send you to the appropriate package
documentation or a helpful forum where someone else has already asked your question.

I am stuck. . . I get an error message that I don’t understand

Start by googling the error message. However, this doesn’t always work very well because often, package
developers rely on the error catching provided by R. You end up with general error messages that might not
be very helpful to diagnose a problem (e.g. “subscript out of bounds”). If the message is very generic, you
might also include the name of the function or package you’re using in your query.

However, you should check Stack Overflow. Search using the [r] tag. Most questions have already been
answered, but the challenge is to use the right words in the search to find the answers: http://stackoverflow.
com/questions/tagged/r

The Introduction to R can also be dense for people with little programming experience but it is a good place
to understand the underpinnings of the R language.

The R FAQ is dense and technical but it is full of useful information.

Asking for help

The key to receiving help from someone is for them to rapidly grasp your problem. You should make it as
easy as possible to pinpoint where the issue might be.

Try to use the correct words to describe your problem. For instance, a package is not the same thing as
a library. Most people will understand what you meant, but others have really strong feelings about the
difference in meaning. The key point is that it can make things confusing for people trying to help you. Be
as precise as possible when describing your problem.

If possible, try to reduce what doesn’t work to a simple reproducible example. If you can reproduce the
problem using a very small data frame instead of your 50,000 rows and 10,000 columns one, provide the
small one with the description of your problem. When appropriate, try to generalize what you are doing so
even people who are not in your field can understand the question. For instance instead of using a subset of
your real dataset, create a small (3 columns, 5 rows) generic one. For more information on how to write a
reproducible example see this article by Hadley Wickham.

To share an object with someone else, if it’s relatively small, you can use the function dput(). It will output
R code that can be used to recreate the exact same object as the one in memory:

http://www.rdocumentation.org
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://adv-r.had.co.nz/Reproducibility.html
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## iris is an example data frame that comes with R and head() is a
## function that returns the first part of the data frame
dput(head(iris))

## structure(list(Sepal.Length = c(5.1, 4.9, 4.7, 4.6, 5, 5.4),
## Sepal.Width = c(3.5, 3, 3.2, 3.1, 3.6, 3.9), Petal.Length = c(1.4,
## 1.4, 1.3, 1.5, 1.4, 1.7), Petal.Width = c(0.2, 0.2, 0.2,
## 0.2, 0.2, 0.4), Species = structure(c(1L, 1L, 1L, 1L, 1L,
## 1L), .Label = c("setosa", "versicolor", "virginica"), class = "factor")), row.names = c(NA,
## 6L), class = "data.frame")

If the object is larger, provide either the raw file (i.e., your CSV file) with your script up to the point of the
error (and after removing everything that is not relevant to your issue). Alternatively, in particular if your
question is not related to a data frame, you can save any R object to a file using an R-specific binary format:
save(iris, file="iris.rda")

The content of this file is however not human readable, but can easily and efficiently be loaded back into R
on any other platform with:
load(file="iris.rds")

Challenge

Load the iprg.rda data into your R session.

Last, but certainly not least, always include the output of sessionInfo() as it provides critical
information about your platform, the versions of R and the packages that you are using, and other information
that can be very helpful to understand your problem.
sessionInfo()

## R version 3.6.0 RC (2019-04-21 r76417)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/libf77blas.so.3.10.3
## LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=fr_FR.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=fr_FR.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_3.6.0 magrittr_1.5 bookdown_0.9 htmltools_0.3.6
## [5] tools_3.6.0 rstudioapi_0.10 yaml_2.2.0 Rcpp_1.0.1
## [9] stringi_1.4.3 rmarkdown_1.12 knitr_1.22 stringr_1.4.0
## [13] digest_0.6.18 xfun_0.6 evaluate_0.13
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Where to ask for help?

• The person sitting next to you during the workshop. Don’t hesitate to talk to your neighbor during the
workshop, compare your answers, and ask for help. You might also be interested in organizing regular
meetings following the workshop to keep learning from each other.

• Your friendly colleagues: if you know someone with more experience than you, they might be able and
willing to help you.

• Stack Overflow: if your question hasn’t been answered before and is well crafted, chances are you will
get an answer in less than 5 min. Remember to follow their guidelines on how to ask a good question.

• The R-help mailing list: it is read by a lot of people (including most of the R core team), a lot of people
post to it, but the tone can be pretty dry, and it is not always very welcoming to new users. If your
question is valid, you are likely to get an answer very fast but don’t expect that it will come with smiley
faces. Also, here more than anywhere else, be sure to use correct vocabulary (otherwise you might get
an answer pointing to the misuse of your words rather than answering your question). You will also
have more success if your question is about a base function rather than a specific package.

• If your question is about a specific package, see if there is a mailing list for it. Usu-
ally it’s included in the DESCRIPTION file of the package that can be accessed using
packageDescription("name-of-package"). You may also want to try to email the author of
the package directly, or open an issue on the code repository (e.g., GitHub).

• There are also some topic-specific mailing lists (GIS, phylogenetics, etc. . . ), the complete list is here.
• If you use any Bioconductor, for example any of the proteomics, metabolomics or mass-spectrometry

packages, the support forum is the best place to contact the package author and the wide community.

1.3.1 More resources

• The Posting Guide for the R mailing lists.
• How to ask for R help useful guidelines
• This blog post by Jon Skeet has quite comprehensive advice on how to ask programming questions.
• The reprex package is very helpful to create reproducible examples when asking for help.

1.4 Installing packages

To install a new package, using the install.packages function:
install.package("ggplot2")

Bioconductor (and CRAN) packages can be installed with:
install.packages("BiocManager") ## only once
BiocManager::install("MSnbase")

1.5 Introduction to R

1.5.1 Creating objects in R

You can get output from R simply by typing math in the console:
3 + 5

## [1] 8

http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/help/how-to-ask
https://stat.ethz.ch/mailman/listinfo/r-help
http://www.r-project.org/mail.html
https://bioconductor.org/
https://bioconductor.org/packages/release/BiocViews.html#___Proteomics
https://bioconductor.org/packages/release/BiocViews.html#___Metabolomics
https://bioconductor.org/packages/release/BiocViews.html#___MassSpectrometry
https://support.bioconductor.org/
http://www.r-project.org/posting-guide.html
http://blog.revolutionanalytics.com/2014/01/how-to-ask-for-r-help.html
http://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/
https://cran.rstudio.com/web/packages/reprex/
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## [1] 1.714286

However, to do useful and interesting things, we need to assign values to objects. To create an object, we
need to give it a name followed by the assignment operator <-, and the value we want to give it:
weight_kg <- 55

<- is the assignment operator. It assigns values on the right to objects on the left. So, after executing x <-
3, the value of x is 3. The arrow can be read as 3 goes into x. For historical reasons, you can also use =
for assignments, but not in every context. Because of the slight differences in syntax, it is good practice to
always use <- for assignments.

In RStudio, typing Alt + - (push Alt at the same time as the - key) will write <- in a single keystroke.

Objects can be given any name such as x, current_temperature, or subject_id. You want your object
names to be explicit and not too long. They cannot start with a number (2x is not valid, but x2 is). R is case
sensitive (e.g., weight_kg is different from Weight_kg). There are some names that cannot be used because
they are the names of fundamental functions in R (e.g., if, else, for, see here for a complete list). In
general, even if it’s allowed, it’s best to not use other function names (e.g., c, T, mean, data, df, weights). If
in doubt, check the help to see if the name is already in use. It’s also best to avoid dots (.) within a variable
name as in my.dataset. There are many functions in R with dots in their names for historical reasons, but
because dots have a special meaning in R (for methods) and other programming languages, it’s best to avoid
them. It is also recommended to use nouns for variable names, and verbs for function names. It’s important
to be consistent in the styling of your code (where you put spaces, how you name variables, etc.). Using a
consistent coding style makes your code clearer to read for your future self and your collaborators. In R, two
popular style guides are Hadley Wickham’s and Google’s (this one is also comprehensive).

When assigning a value to an object, R does not print anything. You can force R to print the value by using
parentheses or by typing the object name:
weight_kg <- 55 # doesn't print anything
(weight_kg <- 55) # but putting parenthesis around the call prints the value of `weight_kg`

## [1] 55
weight_kg # and so does typing the name of the object

## [1] 55

Now that R has weight_kg in memory, we can do arithmetic with it. For instance, we may want to convert
this weight into pounds (weight in pounds is 2.2 times the weight in kg):
2.2 * weight_kg

## [1] 121

We can also change a variable’s value by assigning it a new one:
weight_kg <- 57.5
2.2 * weight_kg

## [1] 126.5

This means that assigning a value to one variable does not change the values of other variables. For example,
let’s store the animal’s weight in pounds in a new variable, weight_lb:
weight_lb <- 2.2 * weight_kg

and then change weight_kg to 100.

http://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://web.archive.org/web/20130610005305/https://stat.ethz.ch/pipermail/r-help/2009-March/191462.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html
http://adv-r.had.co.nz/Style.html
https://google.github.io/styleguide/Rguide.xml
http://jef.works/R-style-guide/
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weight_kg <- 100

What do you think is the current content of the object weight_lb? 126.5 or 220?

1.5.2 Comments

The comment character in R is #, anything to the right of a # in a script will be ignored by R. It is useful to
leave notes, and explanations in your scripts. RStudio makes it easy to comment or uncomment a paragraph:
after selecting the lines you want to comment, press at the same time on your keyboard Ctrl + Shift + C.

Challenge

What are the values after each statement in the following?
mass <- 47.5 # mass?
age <- 122 # age?
mass <- mass * 2.0 # mass?
age <- age - 20 # age?
mass_index <- mass/age # mass_index?

1.5.3 Functions and their arguments

Functions are “canned scripts” that automate more complicated sets of commands including operations
assignments, etc. Many functions are predefined, or can be made available by importing R packages (more on
that later). A function usually gets one or more inputs called arguments. Functions often (but not always)
return a value. A typical example would be the function sqrt(). The input (the argument) must be a
number, and the return value (in fact, the output) is the square root of that number. Executing a function
(‘running it’) is called calling the function. An example of a function call is:
b <- sqrt(a)

Here, the value of a is given to the sqrt() function, the sqrt() function calculates the square root, and
returns the value which is then assigned to variable b. This function is very simple, because it takes just one
argument.

The return ‘value’ of a function need not be numerical (like that of sqrt()), and it also does not need to be
a single item: it can be a set of things, or even a dataset. We’ll see that when we read data files into R.

Arguments can be anything, not only numbers or filenames, but also other objects. Exactly what each
argument means differs per function, and must be looked up in the documentation (see below). Some functions
take arguments which may either be specified by the user, or, if left out, take on a default value: these are
called options. Options are typically used to alter the way the function operates, such as whether it ignores
‘bad values’, or what symbol to use in a plot. However, if you want something specific, you can specify a
value of your choice which will be used instead of the default.

Let’s try a function that can take multiple arguments: round().
round(3.14159)

## [1] 3

Here, we’ve called round() with just one argument, 3.14159, and it has returned the value 3. That’s because
the default is to round to the nearest whole number. If we want more digits we can see how to do that by
getting information about the round function. We can use args(round) or look at the help for this function
using ?round.
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args(round)

## function (x, digits = 0)
## NULL
?round

We see that if we want a different number of digits, we can type digits=2 or however many we want.
round(3.14159, digits=2)

## [1] 3.14

If you provide the arguments in the exact same order as they are defined you don’t have to name them:
round(3.14159, 2)

## [1] 3.14

And if you do name the arguments, you can switch their order:
round(digits=2, x=3.14159)

## [1] 3.14

It’s good practice to put the non-optional arguments (like the number you’re rounding) first in your function
call, and to specify the names of all optional arguments. If you don’t, someone reading your code might have
to look up the definition of a function with unfamiliar arguments to understand what you’re doing.

1.5.4 Objects vs. variables

What are known as objects in R are known as variables in many other programming languages. Depending
on the context, object and variable can have drastically different meanings. However, in this lesson, the two
words are used synonymously. For more information see: https://cran.r-project.org/doc/manuals/r-release/
R-lang.html#Objects

1.6 Vectors and data types

A vector is the most common and basic data type in R, and is pretty much the workhorse of R. A vector is
composed by a series of values, which can be either numbers or characters. We can assign a series of values
to a vector using the c() function. For example we can create a vector of peptide lengths and assign it to a
new object pep_len:
pep_lens <- c(17, 13, 7)
pep_lens

## [1] 17 13 7

A vector can also contain characters:
peps <- c("VESITARHGEVLQLRPK", "IDGQWVTHQWLK", "LVILLFR")
peps

## [1] "VESITARHGEVLQLRPK" "IDGQWVTHQWLK" "LVILLFR"

The quotes around the peptide sequences are essential here. Without the quotes R will assume there are
objects called VESITARHGEVLQLRPK, LVILLFR, . . . As these objects don’t exist in R’s memory, there will be
an error message.

https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Objects
https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Objects
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There are many functions that allow you to inspect the content of a vector. length() tells you how many
elements are in a particular vector:
length(pep_lens)

## [1] 3
length(peps)

## [1] 3

An important feature of a vector, is that all of the elements are the same type of data. The function class()
indicates the class (the type of element) of an object:
class(pep_lens)

## [1] "numeric"
class(peps)

## [1] "character"

The function str() provides an overview of the structure of an object and its elements. It is a useful function
when working with large and complex objects:
str(pep_lens)

## num [1:3] 17 13 7
str(peps)

## chr [1:3] "VESITARHGEVLQLRPK" "IDGQWVTHQWLK" "LVILLFR"

You can use the c() function to add other elements to your vector:
pep_lens <- c(pep_lens, 5) # add to the end of the vector
pep_lens <- c(10, pep_lens) # add to the beginning of the vector
pep_lens

## [1] 10 17 13 7 5

In the first line, we take the original vector pep_lens, add the value 5 to the end of it, and save the result
back into pep_lens. Then we add the value 10 to the beginning, again saving the result back into pep_lens.

We can do this over and over again to grow a vector, or assemble a dataset. As we program, this may be
useful to add results that we are collecting or calculating.

We just saw 2 of the 6 main atomic vector types (or data types) that R uses: "character" and "numeric".
These are the basic building blocks that all R objects are built from. The other 4 are:

• "logical" for TRUE and FALSE (the boolean data type)
• "integer" for integer numbers (e.g., 2L, the L indicates to R that it’s an integer)
• "complex" to represent complex numbers with real and imaginary parts (e.g., 1+4i) and that’s all

we’re going to say about them
• "raw" that we won’t discuss further

Vectors are one of the many data structures that R uses. Other important ones are lists (list), matrices
(matrix), data frames (data.frame), factors (factor) and arrays (array).

Challenge

• We’ve seen that atomic vectors can be of type character, numeric, integer, and logical. But
what happens if we try to mix these types in a single vector?
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• What will happen in each of these examples? (hint: use class() to check the data type of
your objects):
num_char <- c(1, 2, 3, 'a')
num_logical <- c(1, 2, 3, TRUE)
char_logical <- c('a', 'b', 'c', TRUE)
tricky <- c(1, 2, 3, '4')

If we want to extract one or several values from a vector, we must provide one or several indices in square
brackets. For instance:
peps <- c("VESITARHGEVLQLRPK", "IDGQWVTHQWLK", "LVILLFR", "ARHGILPK")
peps[2]

## [1] "IDGQWVTHQWLK"
peps[c(3, 2)]

## [1] "LVILLFR" "IDGQWVTHQWLK"

We can also repeat the indices to create an object with more elements than the original one:
more_peps <- peps[c(1, 2, 3, 2, 1, 4)]
more_peps

## [1] "VESITARHGEVLQLRPK" "IDGQWVTHQWLK" "LVILLFR"
## [4] "IDGQWVTHQWLK" "VESITARHGEVLQLRPK" "ARHGILPK"

R indices start at 1. Programming languages like Fortran, MATLAB, and R start counting at 1, because
that’s what human beings typically do. Languages in the C family (including C++, Java, Perl, and Python)
count from 0 because that’s simpler for computers to do.

1.6.1 Conditional subsetting

Another common way of subsetting is by using a logical vector. TRUE will select the element with the same
index, while FALSE will not:
pep_lens <- c(17, 12, 7, 8)
pep_lens[c(TRUE, FALSE, TRUE, FALSE)]

## [1] 17 7

Typically, these logical vectors are not typed by hand, but are the output of other functions or logical tests.
For instance, if you wanted to select only the values above 50:
pep_lens > 10 # will return logicals with TRUE for the indices that meet the condition

## [1] TRUE TRUE FALSE FALSE
## so we can use this to select only the values above 10
pep_lens[pep_lens > 10]

## [1] 17 12

You can combine multiple tests using & (both conditions are true, AND) or | (at least one of the conditions
is true, OR):
pep_lens[pep_lens < 8 | pep_lens > 15]

## [1] 17 7
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pep_lens[pep_lens <= 12 & pep_lens == 10]

## numeric(0)

Here, < stands for “less than”, > for “greater than”, >= for “greater than or equal to”, and == for “equal to”.
The double equal sign == is a test for numerical equality between the left and right hand sides, and should
not be confused with the single = sign, which performs variable assignment (similar to <-).

A common task is to search for certain strings in a vector. One could use the “or” operator | to test for
equality to multiple values, but this can quickly become tedious. The function %in% allows you to test if any
of the elements of a search vector are found:
peps <- c("VESITARHGEVLQLRPK", "IDGQWVTHQWLK", "LVILLFR", "ARHGILPK")
peps[peps == "IDGQWVTHQWLK" | peps == "LVILLFR"] # returns both peptides

## [1] "IDGQWVTHQWLK" "LVILLFR"
peps %in% c("IDGQWVTHQWLK", "LVILLFR", "SITARH", "VESITA", "ARHGILGHIIHKKP")

## [1] FALSE TRUE TRUE FALSE
peps[peps %in% c("IDGQWVTHQWLK", "LVILLFR", "SITARH", "VESITA", "ARHGILGHIIHKKP")]

## [1] "IDGQWVTHQWLK" "LVILLFR"

1.7 Missing data

As R was designed to analyze datasets, it includes the concept of missing data (which is uncommon in other
programming languages). Missing data are represented in vectors as NA.

When doing operations on numbers, most functions will return NA if the data you are working with include
missing values. This feature makes it harder to overlook the cases where you are dealing with missing data.
You can add the argument na.rm=TRUE to calculate the result while ignoring the missing values.
heights <- c(2, 4, 4, NA, 6)
mean(heights)

## [1] NA
max(heights)

## [1] NA
mean(heights, na.rm = TRUE)

## [1] 4
max(heights, na.rm = TRUE)

## [1] 6

If your data include missing values, you may want to become familiar with the functions is.na(), na.omit(),
and complete.cases(). See below for examples.
## Extract those elements which are not missing values.
heights[!is.na(heights)]

## [1] 2 4 4 6
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## Returns the object with incomplete cases removed. The returned object is atomic.
na.omit(heights)

## [1] 2 4 4 6
## attr(,"na.action")
## [1] 4
## attr(,"class")
## [1] "omit"
## Extract those elements which are complete cases.
heights[complete.cases(heights)]

## [1] 2 4 4 6

Challenge

1. Using this vector of length measurements, create a new vector with the NAs removed.
lens <- c(10, 24, NA, 18, NA, 20)

2. Use the function median() to calculate the median of the lens vector.
lens <- c(10, 24, NA, 18, NA, 20)
median(lens) ## NA

## [1] NA
lens2 <- na.omit(lens)
median(lens)

## [1] NA
median(lens, na.rm = TRUE)

## [1] 19

Now that we have learned how to write scripts, and the basics of R’s data structures, we are ready to start
working with the Portal dataset we have been using in the other lessons, and learn about data frames.

1.8 R markdown

Markdown (extension .md) is a very simple markup language in plain text, that can be converted to many
different outputs, such as pdf and html to name a few.

It is also possible to interleave R code into markdown documents, producing so called R mardown documents
(extension .Rmd). Before generating the final html of pdf output, the Rmd files are first knit (or weaved),
i.e. the R code chunks are extracted, exectuted and replaced by their output, be it text, tables or figures.

Rmarkdown is a fantastic tool to implement reproducible research, as we have the guarantee that code
results and figures, displayed in the final document, accurately represent the analysis restults. They provide
a relatively easly way to generate high quality and reproducible analysis reports for any arbitrary input data
that is submitted to an established analysis routine. The R package that supports this is rmarkdown, and the
whole process is made relatively easy with RStudio and available documentation.

We are going to walk through the creation of such a document.

Challenge

• Create a new R markdown document in RStudio, and compile it to html or pdf.

http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/lesson-1.html
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• An important aspect of reproducible research is the record the version of software used. Add
a code chunk at the end of the R markdown document and call sessionInfo.

In the next sections, we are going to learn how to read data sets into R, how to explore and visualise the
data, and how to perform basic statistical analyses.
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Chapter 2

Data analysis with R

Objectives

• Reading data in R
• Data manipulation and exploration
• Visualisation

The data.frame and ggplot2 sections are based on the R for data analysis and visualization Data Carpentry
course.

2.1 Data analysis

2.1.1 Reading in data

The file we’ll be reading in is a dataset that has been 1) processed in Skyline and 2) summarized by each run
and protein with MSstats. We will practice with it.

Tip Often you’ll get data delivered as a Microsoft Excel file. You can export any spreadsheet to a .csv (comma
separated values) file in Excel through the Save As.. > Format: Comma Separated Values (.csv) menu
item.

In Rstudio, go to the environnment pane, click on Import Dataset dropdown and choose From Text
File... from the dropdown menu. Import the iPRG_example_runsummary.csv file from your data directory,
and inspect that Rstudio correctly parsed the text file into an R data.frame.

Now inspect the Console Environment pane again. Notice that a new variable for the iPRG_example
data frame was created in the environment by executing the read.csv function. Let’s have a look at the
documentation for this function by pulling up the help pages with the ?.
iprg <- read.csv("./data/iPRG_example_runsummary.csv")

2.1.2 Data frames

2.1.2.1 Tidy data

The iprg object that we created is a data.frame
class(iprg)

25

http://www.datacarpentry.org/R-ecology-lesson/index.html


26 CHAPTER 2. DATA ANALYSIS WITH R

## [1] "data.frame"

These object are the equivalent of a sheet in a spreadsheet file. They are composed on a set of columns,
which are different vectors (or characters, numerics, factors, . . . ) as seen previously.

There are actually some additional constrains compared to a spreadsheet. Rather than being limitations,
these constrains are an important feature that allow some standardisation and hence automatic computations.

• All the data in a data.frame must be included in a column, as a vector. This means that it’s not
possible to add random notes or values, as is sometimes seen in spreadsheets.

• All columns/vectors must have the same length, as opposed to spreadsheets, where sometimes some
values or summary statistics are added at the bottom.

• No colours or font decorations.

This leads us to a very important concept in data formatting and data manipulation, which is that data
should be tidy, where

• Columns describe different variables
• Rows describe different observations
• A cell contains a measurement or piece of information for a single observation.

There are two important reasons that we want tidy data

1. No need to tidy it up, which is a task many of us waste way to much time with.
2. The data is well structured, easy to read in, whatever the software or programming languages, and is

easy to reason about.

Note that data is always tidy, and for good reasons so. For example, omics data is often presented as shown
below

JD_06232014_sample1-A.raw JD_06232014_sample1_B.raw
sp|D6VTK4|STE2_YEAST 26.58301 26.81232
sp|O13297|CET1_YEAST 24.71809 24.71912
sp|O13329|FOB1_YEAST 23.47075 23.37678
sp|O13539|THP2_YEAST 24.29661 27.52021
sp|O13547|CCW14_YEAST 27.11638 27.22234

which is not strictly tidy, as the protein intensity is presented along multiple columns. Some situations lend
themselves more to a long or wide format (as we will see later), but the data should never be messy, as for
example below:
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Challenge

Compare the structure of the data presented above (loaded from the iprg2.rda files) and the
iprg data.

2.1.2.2 What are data frames?

Data frames are the de facto data structure for most tabular data, and what we use for statistics and plotting.
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A data frame can be created by hand, but most commonly they are generated by the functions read.csv()
or read.table(); in other words, when importing spreadsheets from your hard drive (or the web).

A data frame is the representation of data in the format of a table where the columns are vectors that all have
the same length. Because the column are vectors, they all contain the same type of data (e.g., characters,
integers, factors). We can see this when inspecting the structure of a data frame with the function str():
str(iprg)

## 'data.frame': 36321 obs. of 7 variables:
## $ Protein : Factor w/ 3027 levels "sp|D6VTK4|STE2_YEAST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Log2Intensity: num 26.8 26.6 26.6 26.8 26.8 ...
## $ Run : Factor w/ 12 levels "JD_06232014_sample1_B.raw",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Condition : Factor w/ 4 levels "Condition1","Condition2",..: 1 1 1 2 2 2 3 3 3 4 ...
## $ BioReplicate : int 1 1 1 2 2 2 3 3 3 4 ...
## $ Intensity : num 1.18e+08 1.02e+08 1.01e+08 1.20e+08 1.16e+08 ...
## $ TechReplicate: Factor w/ 3 levels "A","B","C": 2 3 1 1 2 3 1 2 3 2 ...

2.1.3 Inspecting data.frame objects

We already saw how the functions head() and str() can be useful to check the content and the structure of
a data frame. Here is a non-exhaustive list of functions to get a sense of the content/structure of the data.
Let’s try them out!

• Size:
– dim(iprg) - returns a vector with the number of rows in the first element, and the number of

columns as the second element (the dimensions of the object)
– nrow(iprg) - returns the number of rows
– ncol(iprg) - returns the number of columns

• Content:
– head(iprg) - shows the first 6 rows
– tail(iprg) - shows the last 6 rows

• Names:
– names(iprg) - returns the column names (synonym of colnames() for data.frame objects)
– rownames(iprg) - returns the row names

• Summary:
– str(iprg) - structure of the object and information about the class, length and content of each

column
– summary(iprg) - summary statistics for each column

Note: most of these functions are “generic”, they can be used on other types of objects besides data.frame.

Challenge

Based on the output of str(iprg), can you answer the following questions?

• What is the class of the object iprg?
• How many rows and how many columns are in this object?
• How many proteins have been assayed?

2.1.4 Indexing and subsetting data frames

Our data frame has rows and columns (it has 2 dimensions), if we want to extract some specific data from it,
we need to specify the coordinates we want from it. Row numbers come first, followed by column numbers.
However, note that different ways of specifying these coordinates lead to results with different classes.
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iprg[1] # first column in the data frame (as a data.frame)
iprg[, 1] # first column in the data frame (as a vector)
iprg[1, 1] # first element in the first column of the data frame (as a vector)
iprg[1, 6] # first element in the 6th column (as a vector)
iprg[1:3, 3] # first three elements in the 3rd column (as a vector)
iprg[3, ] # the 3rd element for all columns (as a data.frame)
head_iprg <- iprg[1:6, ] # equivalent to head(iprg)

: is a special function that creates numeric vectors of integers in increasing or decreasing order, test 1:10
and 10:1 for instance.

You can also exclude certain parts of a data frame using the - sign:
iprg[, -1] # The whole data frame, except the first column
iprg[-c(7:36321), ] # Equivalent to head(iprg)

As well as using numeric values to subset a data.frame columns can be called by name, using one of the
four following notations:
iprg["Protein"] # Result is a data.frame
iprg[, "Protein"] # Result is a vector
iprg[["Protein"]] # Result is a vector
iprg$Protein # Result is a vector

For our purposes, the last three notations are equivalent. RStudio knows about the columns in your data
frame, so you can take advantage of the autocompletion feature to get the full and correct column name.

Challenge

1. Create a data.frame (iprg_200) containing only the observations from row 200 of the iprg
dataset.

2. Notice how nrow() gave you the number of rows in a data.frame?

• Use that number to pull out just that last row in the data frame.
• Compare that with what you see as the last row using tail() to make sure it’s meeting

expectations.
• Pull out that last row using nrow() instead of the row number.
• Create a new data frame object iprg_last from that last row.

3. Extract the row that is in the middle of the data frame. Store the content of this row in an
object named iprg_middle.

4. Combine nrow() with the - notation above to reproduce the behavior of head(iprg) keeping
just the first through 6th rows of the iprg dataset.

## 1.
iprg_200 <- iprg[200, ]

## 2.
iprg_last <- iprg[nrow(iprg), ]

## 3.
(i <- floor(nrow(iprg)/2))

## [1] 18160
iprg_middle <- iprg[i, ]
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## 4.
iprg[-(7:nrow(iprg)), ]

## Protein Log2Intensity Run Condition
## 1 sp|D6VTK4|STE2_YEAST 26.81232 JD_06232014_sample1_B.raw Condition1
## 2 sp|D6VTK4|STE2_YEAST 26.60786 JD_06232014_sample1_C.raw Condition1
## 3 sp|D6VTK4|STE2_YEAST 26.58301 JD_06232014_sample1-A.raw Condition1
## 4 sp|D6VTK4|STE2_YEAST 26.83563 JD_06232014_sample2_A.raw Condition2
## 5 sp|D6VTK4|STE2_YEAST 26.79430 JD_06232014_sample2_B.raw Condition2
## 6 sp|D6VTK4|STE2_YEAST 26.60863 JD_06232014_sample2_C.raw Condition2
## BioReplicate Intensity TechReplicate
## 1 1 117845016 B
## 2 1 102273602 C
## 3 1 100526837 A
## 4 2 119765106 A
## 5 2 116382798 B
## 6 2 102328260 C

2.1.5 Factors

When we did str(iprg) we saw that several of the columns consist of numerics, however, the columns
Protein, Run, and Condition, are of a special class called a factor. Factors are very useful and are actually
something that make R particularly well suited to working with data, so we’re going to spend a little time
introducing them.

Factors are used to represent categorical data. Factors can be ordered or unordered, and understanding them
is necessary for statistical analysis and for plotting.

Factors are stored as integers, and have labels (text) associated with these unique integers. While factors
look (and often behave) like character vectors, they are actually integers under the hood, and you need to be
careful when treating them like strings.

Once created, factors can only contain a pre-defined set of values, known as levels. By default, R always sorts
levels in alphabetical order. For instance, if you have a factor with 2 levels:
sex <- factor(c("male", "female", "female", "male"))

R will assign 1 to the level "female" and 2 to the level "male" (because f comes before m, even though the
first element in this vector is "male"). You can check this by using the function levels(), and check the
number of levels using nlevels():
levels(sex)

## [1] "female" "male"
nlevels(sex)

## [1] 2

Sometimes, the order of the factors does not matter, other times you might want to specify the order because
it is meaningful (e.g., “low”, “medium”, “high”), it improves your visualization, or it is required by a particular
type of analysis. Here, one way to reorder our levels in the sex vector would be:
sex # current order

## [1] male female female male
## Levels: female male
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sex <- factor(sex, levels = c("male", "female"))
sex # after re-ordering

## [1] male female female male
## Levels: male female

In R’s memory, these factors are represented by integers (1, 2, 3), but are more informative than integers
because factors are self describing: "female", "male" is more descriptive than 1, 2. Which one is “male”?
You wouldn’t be able to tell just from the integer data. Factors, on the other hand, have this information
built in. It is particularly helpful when there are many levels (like the species names in our example dataset).

2.1.5.1 Converting factors

If you need to convert a factor to a character vector, you use as.character(x).
as.character(sex)

## [1] "male" "female" "female" "male"

2.1.5.2 Using stringsAsFactors=FALSE

By default, when building or importing a data frame, the columns that contain characters (i.e., text) are
coerced (=converted) into the factor data type. Depending on what you want to do with the data, you
may want to keep these columns as character. To do so, read.csv() and read.table() have an argument
called stringsAsFactors which can be set to FALSE.

In most cases, it’s preferable to set stringsAsFactors = FALSE when importing your data, and converting
as a factor only the columns that require this data type.

Challenge

Compare the output of str(surveys) when setting stringsAsFactors = TRUE (default) and
stringsAsFactors = FALSE:

iprg <- read.csv("data/iPRG_example_runsummary.csv", stringsAsFactors = TRUE)
str(iprg)

## 'data.frame': 36321 obs. of 7 variables:
## $ Protein : Factor w/ 3027 levels "sp|D6VTK4|STE2_YEAST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Log2Intensity: num 26.8 26.6 26.6 26.8 26.8 ...
## $ Run : Factor w/ 12 levels "JD_06232014_sample1_B.raw",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Condition : Factor w/ 4 levels "Condition1","Condition2",..: 1 1 1 2 2 2 3 3 3 4 ...
## $ BioReplicate : int 1 1 1 2 2 2 3 3 3 4 ...
## $ Intensity : num 1.18e+08 1.02e+08 1.01e+08 1.20e+08 1.16e+08 ...
## $ TechReplicate: Factor w/ 3 levels "A","B","C": 2 3 1 1 2 3 1 2 3 2 ...
iprg <- read.csv("data/iPRG_example_runsummary.csv", stringsAsFactors = FALSE)
str(iprg)

## 'data.frame': 36321 obs. of 7 variables:
## $ Protein : chr "sp|D6VTK4|STE2_YEAST" "sp|D6VTK4|STE2_YEAST" "sp|D6VTK4|STE2_YEAST" "sp|D6VTK4|STE2_YEAST" ...
## $ Log2Intensity: num 26.8 26.6 26.6 26.8 26.8 ...
## $ Run : chr "JD_06232014_sample1_B.raw" "JD_06232014_sample1_C.raw" "JD_06232014_sample1-A.raw" "JD_06232014_sample2_A.raw" ...
## $ Condition : chr "Condition1" "Condition1" "Condition1" "Condition2" ...
## $ BioReplicate : int 1 1 1 2 2 2 3 3 3 4 ...
## $ Intensity : num 1.18e+08 1.02e+08 1.01e+08 1.20e+08 1.16e+08 ...
## $ TechReplicate: chr "B" "C" "A" "A" ...
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2.1.6 Other data structures

dimensions number of types
vector 1 1
matrix 2 1
array any 1
data.frame 2 1 per colums
list 1 (length) any

2.1.7 Data exploration

Let’s explore some basic properties of our dataset. Go to the RStudio Environment pane and double click the
iPRG_example entry. This data is in tidy, long format, which is an easier data format for data manipulation
operations such as selecting, grouping, summarizing, etc.

Data exported out of many omics processing or quantification tools are often formatted in wide format, which
is easier to read when we would like to compare values (i.e intensity values) for specific subjects (i.e peptides)
across different values for a variable of interest such as (i.e conditions). We’ll format a summary of this
dataset as a ‘wide’ data frame later in this tutorial.

Let’s do some more data exploration by examining how R read in the iPRG dataset.

Challenge

Explore the data as described below

• What is the class of the variable?
• What dimension is it? How many rows and columns does it have?
• What variables (column names) do we have?
• Look at the few first and last lines to make sure the data was imported correctly.
• Display a summary of the whole data.

Let’s now inspect the possible values for the Conditions and the BioReplicate columns. To aswer the
questions, below, we will need to use the unique function. From the manual page, we learn that

'unique' returns a vector, data frame or array like 'x' but with
duplicate elements/rows removed.

For example
unique(c(1, 2, 4, 1, 1, 2, 3, 3, 4, 1))

## [1] 1 2 4 3
unique(c("a", "b", "a"))

## [1] "a" "b"
dfr <- data.frame(x = c(1, 1, 2),

y = c("a", "a", "b"))
dfr

## x y
## 1 1 a
## 2 1 a
## 3 2 b
unique(dfr)
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## x y
## 1 1 a
## 3 2 b

Challenge

1. How many conditions are there?
2. How many biological replicates are there?
3. How many condition/technical replicates combinations are there?

## 1.
unique(iprg$Condition)

## [1] "Condition1" "Condition2" "Condition3" "Condition4"
length(unique(iprg$Condition))

## [1] 4
## 2.
unique(iprg$BioReplicate)

## [1] 1 2 3 4
length(unique(iprg$BioReplicate))

## [1] 4
## 3.
unique(iprg$Condition)

## [1] "Condition1" "Condition2" "Condition3" "Condition4"
unique(iprg$BioReplicate)

## [1] 1 2 3 4
unique(iprg[, c("Condition", "TechReplicate")])

## Condition TechReplicate
## 1 Condition1 B
## 2 Condition1 C
## 3 Condition1 A
## 4 Condition2 A
## 5 Condition2 B
## 6 Condition2 C
## 7 Condition3 A
## 8 Condition3 B
## 9 Condition3 C
## 10 Condition4 B
## 11 Condition4 C
## 12 Condition4 A

It is often useful to start a preliminary analysis, or proceed with a more detailed data exploration using a
smaller subset of the data.

Challenge

Select subsets of rows from iPRG dataset. Let’s focus on

• Condition 1 only
• Condition 1 and TechReplicate A
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• all measurements on one particular MS run.
• Conditions 1 and 2

For each of there, how many measurements are there?
iprg_c1 <- iprg[iprg$Condition == "Condition1", ]
head(iprg_c1)

## Protein Log2Intensity Run Condition
## 1 sp|D6VTK4|STE2_YEAST 26.81232 JD_06232014_sample1_B.raw Condition1
## 2 sp|D6VTK4|STE2_YEAST 26.60786 JD_06232014_sample1_C.raw Condition1
## 3 sp|D6VTK4|STE2_YEAST 26.58301 JD_06232014_sample1-A.raw Condition1
## 13 sp|O13297|CET1_YEAST 24.71912 JD_06232014_sample1_B.raw Condition1
## 14 sp|O13297|CET1_YEAST 24.67437 JD_06232014_sample1_C.raw Condition1
## 15 sp|O13297|CET1_YEAST 24.71809 JD_06232014_sample1-A.raw Condition1
## BioReplicate Intensity TechReplicate
## 1 1 117845016 B
## 2 1 102273602 C
## 3 1 100526837 A
## 13 1 27618234 B
## 14 1 26774670 C
## 15 1 27598550 A
nrow(iprg_c1)

## [1] 9079
iprg_c1A <- iprg[iprg$Condition == "Condition1" & iprg$TechReplicate == "A", ]
head(iprg_c1A)

## Protein Log2Intensity Run
## 3 sp|D6VTK4|STE2_YEAST 26.58301 JD_06232014_sample1-A.raw
## 15 sp|O13297|CET1_YEAST 24.71809 JD_06232014_sample1-A.raw
## 27 sp|O13329|FOB1_YEAST 23.47075 JD_06232014_sample1-A.raw
## 39 sp|O13539|THP2_YEAST 24.29661 JD_06232014_sample1-A.raw
## 51 sp|O13547|CCW14_YEAST 27.11638 JD_06232014_sample1-A.raw
## 63 sp|O13563|RPN13_YEAST 26.17056 JD_06232014_sample1-A.raw
## Condition BioReplicate Intensity TechReplicate
## 3 Condition1 1 100526837 A
## 15 Condition1 1 27598550 A
## 27 Condition1 1 11625198 A
## 39 Condition1 1 20606703 A
## 51 Condition1 1 145493943 A
## 63 Condition1 1 75530595 A
nrow(iprg_c1A)

## [1] 3026
iprg_r1 <- iprg[iprg$Run == "JD_06232014_sample1_B.raw", ]
head(iprg_r1)

## Protein Log2Intensity Run
## 1 sp|D6VTK4|STE2_YEAST 26.81232 JD_06232014_sample1_B.raw
## 13 sp|O13297|CET1_YEAST 24.71912 JD_06232014_sample1_B.raw
## 25 sp|O13329|FOB1_YEAST 23.37678 JD_06232014_sample1_B.raw
## 37 sp|O13539|THP2_YEAST 27.52021 JD_06232014_sample1_B.raw
## 49 sp|O13547|CCW14_YEAST 27.22234 JD_06232014_sample1_B.raw
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## 61 sp|O13563|RPN13_YEAST 26.09476 JD_06232014_sample1_B.raw
## Condition BioReplicate Intensity TechReplicate
## 1 Condition1 1 117845016 B
## 13 Condition1 1 27618234 B
## 25 Condition1 1 10892143 B
## 37 Condition1 1 192490784 B
## 49 Condition1 1 156581624 B
## 61 Condition1 1 71664672 B
nrow(iprg_r1)

## [1] 3026
iprg_c12 <- iprg[iprg$Condition %in% c("Condition1", "Condition2"), ]
head(iprg_c12)

## Protein Log2Intensity Run Condition
## 1 sp|D6VTK4|STE2_YEAST 26.81232 JD_06232014_sample1_B.raw Condition1
## 2 sp|D6VTK4|STE2_YEAST 26.60786 JD_06232014_sample1_C.raw Condition1
## 3 sp|D6VTK4|STE2_YEAST 26.58301 JD_06232014_sample1-A.raw Condition1
## 4 sp|D6VTK4|STE2_YEAST 26.83563 JD_06232014_sample2_A.raw Condition2
## 5 sp|D6VTK4|STE2_YEAST 26.79430 JD_06232014_sample2_B.raw Condition2
## 6 sp|D6VTK4|STE2_YEAST 26.60863 JD_06232014_sample2_C.raw Condition2
## BioReplicate Intensity TechReplicate
## 1 1 117845016 B
## 2 1 102273602 C
## 3 1 100526837 A
## 4 2 119765106 A
## 5 2 116382798 B
## 6 2 102328260 C
nrow(iprg_c12)

## [1] 18160

2.2 Manipulating and analyzing data with dplyr

The following material is based on Data Carpentry’s the Data analisis and visualisation lessons.

Learning Objectives:

• Understand the purpose of the dplyr package.
• Select certain columns in a data frame with the dplyr function select.
• Select certain rows in a data frame according to filtering conditions with the dplyr function filter .
• Link the output of one dplyr function to the input of another function with the ‘pipe’ operator.
• Add new columns to a data frame that are functions of existing columns with mutate.
• Understand the split-apply-combine concept for data analysis.
• Use summarize, group_by, and tally to split a data frame into groups of observations, apply a summary

statistics for each group, and then combine the results.

Bracket subsetting is handy, but it can be cumbersome and difficult to read, especially for complicated
operations. Enter dplyr. dplyr is a package for making tabular data manipulation easier. It pairs nicely
with tidyr which enables you to swiftly convert between different data formats for plotting and analysis.

Packages in R are basically sets of additional functions that let you do more stuff. The functions we’ve
been using so far, like str() or data.frame(), come built into R; packages give you access to more of them.
Before you use a package for the first time you need to install it on your machine, and then you should import

http://www.datacarpentry.org/R-ecology-lesson/
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it in every subsequent R session when you need it. You should already have installed the tidyverse package.
This is an “umbrella-package” that installs several packages useful for data analysis which work together well
such as dplyr, ggplot2 (for visualisation), tibble, etc.

The tidyverse package tries to address 3 major problems with some of base R functions:

1. The results from a base R function sometimes depends on the type of data.
2. Using R expressions in a non standard way, which can be confusing for new learners.
3. Hidden arguments, having default operations that new learners are not aware of.

We have seen in our previous lesson that when building or importing a data frame, the columns that contain
characters (i.e., text) are coerced (=converted) into the factor data type. We had to set stringsAsFactor to
FALSE to avoid this hidden argument to convert our data type.

This time will use the tidyverse package to read the data and avoid having to set stringsAsFactor to
FALSE

To load the package type:
library("tidyverse") ## load the tidyverse packages, incl. dplyr

2.2.1 What are dplyr and tidyr?

The package dplyr provides easy tools for the most common data manipulation tasks. It is built to work
directly with data frames, with many common tasks optimized by being written in a compiled language
(C++). An additional feature is the ability to work directly with data stored in an external database. The
benefits of doing this are that the data can be managed natively in a relational database, queries can be
conducted on that database, and only the results of the query are returned.

This addresses a common problem with R in that all operations are conducted in-memory and thus the
amount of data you can work with is limited by available memory. The database connections essentially
remove that limitation in that you can have a database of many 100s GB, conduct queries on it directly, and
pull back into R only what you need for analysis.

The package tidyr addresses the common problem of wanting to reshape your data for plotting and use by
different R functions. Sometimes we want data sets where we have one row per measurement. Sometimes we
want a data frame where each measurement type has its own column, and rows are instead more aggregated
groups - like plots or aquaria. Moving back and forth between these formats is nontrivial, and tidyr gives
you tools for this and more sophisticated data manipulation.

To learn more about dplyr and tidyr after the workshop, you may want to check out this handy data
transformation with dplyr cheatsheet and this one about tidyr.

dplyr reads data using read_csv(), instead of read.csv()
iprg <- read_csv('data/iPRG_example_runsummary.csv')

## Parsed with column specification:
## cols(
## Protein = col_character(),
## Log2Intensity = col_double(),
## Run = col_character(),
## Condition = col_character(),
## BioReplicate = col_double(),
## Intensity = col_double(),
## TechReplicate = col_character()
## )

https://www.tidyverse.org/
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-import.pdf
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## inspect the data
str(iprg)

Notice that the class of the data is now tbl_df This is referred to as a “tibble”. Tibbles are data frames, but
they tweak some of the old behaviors of data frames. The data structure is very similar to a data frame. For
our purposes the only differences are that:

1. In addition to displaying the data type of each column under its name, it only prints the first few rows
of data and only as many columns as fit on one screen.

2. Columns of class character are never converted into factors.

2.2.2 Selecting columns and filtering rows

We’re going to learn some of the most common dplyr functions: select(), filter(), mutate(), group_by(),
and summarize(). To select columns of a data frame, use select(). The first argument to this function is
the data frame, and the subsequent arguments are the columns to keep.
select(iprg, Protein, Run, Condition)

To choose rows based on a specific criteria, use filter():
filter(iprg, BioReplicate == 1)

## # A tibble: 9,079 x 7
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|D6V~ 26.8 JD_0~ Conditio~ 1 1.18e8
## 2 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.02e8
## 3 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.01e8
## 4 sp|O13~ 24.7 JD_0~ Conditio~ 1 2.76e7
## 5 sp|O13~ 24.7 JD_0~ Conditio~ 1 2.68e7
## 6 sp|O13~ 24.7 JD_0~ Conditio~ 1 2.76e7
## 7 sp|O13~ 23.4 JD_0~ Conditio~ 1 1.09e7
## 8 sp|O13~ 24.0 JD_0~ Conditio~ 1 1.69e7
## 9 sp|O13~ 23.5 JD_0~ Conditio~ 1 1.16e7
## 10 sp|O13~ 27.5 JD_0~ Conditio~ 1 1.92e8
## # ... with 9,069 more rows, and 1 more variable: TechReplicate <chr>
filter(iprg, Condition == 'Condition2')

## # A tibble: 9,081 x 7
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.20e8
## 2 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.16e8
## 3 sp|D6V~ 26.6 JD_0~ Conditio~ 2 1.02e8
## 4 sp|O13~ 24.5 JD_0~ Conditio~ 2 2.41e7
## 5 sp|O13~ 24.7 JD_0~ Conditio~ 2 2.68e7
## 6 sp|O13~ 24.6 JD_0~ Conditio~ 2 2.51e7
## 7 sp|O13~ 23.2 JD_0~ Conditio~ 2 9.45e6
## 8 sp|O13~ 23.4 JD_0~ Conditio~ 2 1.13e7
## 9 sp|O13~ 23.8 JD_0~ Conditio~ 2 1.43e7
## 10 sp|O13~ 25.9 JD_0~ Conditio~ 2 6.18e7
## # ... with 9,071 more rows, and 1 more variable: TechReplicate <chr>
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2.2.3 Pipes

But what if you wanted to select and filter at the same time? There are three ways to do this: use intermediate
steps, nested functions, or pipes.

With intermediate steps, you essentially create a temporary data frame and use that as input to the next
function. This can clutter up your workspace with lots of objects. You can also nest functions (i.e. one
function inside of another). This is handy, but can be difficult to read if too many functions are nested as
things are evaluated from the inside out.

The last option, pipes, are a fairly recent addition to R. Pipes let you take the output of one function and
send it directly to the next, which is useful when you need to do many things to the same dataset. Pipes in
R look like %>% and are made available via the magrittr package, installed automatically with dplyr. If you
use RStudio, you can type the pipe with Ctrl + Shift + M if you have a PC or Cmd + Shift + M if you have
a Mac.
iprg %>%

filter(Intensity > 1e8) %>%
select(Protein, Condition, Intensity)

## # A tibble: 4,729 x 3
## Protein Condition Intensity
## <chr> <chr> <dbl>
## 1 sp|D6VTK4|STE2_YEAST Condition1 117845016.
## 2 sp|D6VTK4|STE2_YEAST Condition1 102273602.
## 3 sp|D6VTK4|STE2_YEAST Condition1 100526837.
## 4 sp|D6VTK4|STE2_YEAST Condition2 119765106.
## 5 sp|D6VTK4|STE2_YEAST Condition2 116382798.
## 6 sp|D6VTK4|STE2_YEAST Condition2 102328260.
## 7 sp|D6VTK4|STE2_YEAST Condition3 103830944.
## 8 sp|D6VTK4|STE2_YEAST Condition4 102150172.
## 9 sp|D6VTK4|STE2_YEAST Condition4 105724288.
## 10 sp|O13539|THP2_YEAST Condition1 192490784.
## # ... with 4,719 more rows

In the above, we use the pipe to send the iprg dataset first through filter() to keep rows where Intensity
is greater than 1e8, then through select() to keep only the Protein, Condition, and Intensity columns.
Since %>% takes the object on its left and passes it as the first argument to the function on its right, we don’t
need to explicitly include it as an argument to the filter() and select() functions anymore.

If we wanted to create a new object with this smaller version of the data, we could do so by assigning it a
new name:
iprg_sml <- iprg %>%

filter(Intensity > 1e8) %>%
select(Protein, Condition, Intensity)

iprg_sml

## # A tibble: 4,729 x 3
## Protein Condition Intensity
## <chr> <chr> <dbl>
## 1 sp|D6VTK4|STE2_YEAST Condition1 117845016.
## 2 sp|D6VTK4|STE2_YEAST Condition1 102273602.
## 3 sp|D6VTK4|STE2_YEAST Condition1 100526837.
## 4 sp|D6VTK4|STE2_YEAST Condition2 119765106.
## 5 sp|D6VTK4|STE2_YEAST Condition2 116382798.
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## 6 sp|D6VTK4|STE2_YEAST Condition2 102328260.
## 7 sp|D6VTK4|STE2_YEAST Condition3 103830944.
## 8 sp|D6VTK4|STE2_YEAST Condition4 102150172.
## 9 sp|D6VTK4|STE2_YEAST Condition4 105724288.
## 10 sp|O13539|THP2_YEAST Condition1 192490784.
## # ... with 4,719 more rows

Note that the final data frame is the leftmost part of this expression.

Challenge

Using pipes, subset the iprg data to include Proteins with a log2 intensity greater than 20 and
retain only the columns Proteins, and Condition.

## Answer
iprg %>%

filter(Log2Intensity > 20) %>%
select(Protein, Condition)

2.2.4 Mutate

Frequently you’ll want to create new columns based on the values in existing columns, for example to do unit
conversions, or find the ratio of values in two columns. For this we’ll use mutate().

To create a new column of weight in kg:
iprg %>%

mutate(Log10Intensity = log10(Intensity))

## # A tibble: 36,321 x 8
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|D6V~ 26.8 JD_0~ Conditio~ 1 1.18e8
## 2 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.02e8
## 3 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.01e8
## 4 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.20e8
## 5 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.16e8
## 6 sp|D6V~ 26.6 JD_0~ Conditio~ 2 1.02e8
## 7 sp|D6V~ 26.6 JD_0~ Conditio~ 3 1.04e8
## 8 sp|D6V~ 26.5 JD_0~ Conditio~ 3 9.47e7
## 9 sp|D6V~ 26.5 JD_0~ Conditio~ 3 9.69e7
## 10 sp|D6V~ 26.6 JD_0~ Conditio~ 4 1.02e8
## # ... with 36,311 more rows, and 2 more variables: TechReplicate <chr>,
## # Log10Intensity <dbl>

You can also create a second new column based on the first new column within the same call of mutate():
iprg %>%

mutate(Log10Intensity = log10(Intensity),
Log10Intensity2 = Log10Intensity * 2)

## # A tibble: 36,321 x 9
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|D6V~ 26.8 JD_0~ Conditio~ 1 1.18e8
## 2 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.02e8
## 3 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.01e8
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## 4 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.20e8
## 5 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.16e8
## 6 sp|D6V~ 26.6 JD_0~ Conditio~ 2 1.02e8
## 7 sp|D6V~ 26.6 JD_0~ Conditio~ 3 1.04e8
## 8 sp|D6V~ 26.5 JD_0~ Conditio~ 3 9.47e7
## 9 sp|D6V~ 26.5 JD_0~ Conditio~ 3 9.69e7
## 10 sp|D6V~ 26.6 JD_0~ Conditio~ 4 1.02e8
## # ... with 36,311 more rows, and 3 more variables: TechReplicate <chr>,
## # Log10Intensity <dbl>, Log10Intensity2 <dbl>

If this runs off your screen and you just want to see the first few rows, you can use a pipe to view the head()
of the data. (Pipes work with non-dplyr functions, too, as long as the dplyr or magrittr package is loaded).
iprg %>%

mutate(Log10Intensity = log10(Intensity)) %>%
head

## # A tibble: 6 x 8
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|D6V~ 26.8 JD_0~ Conditio~ 1 1.18e8
## 2 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.02e8
## 3 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.01e8
## 4 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.20e8
## 5 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.16e8
## 6 sp|D6V~ 26.6 JD_0~ Conditio~ 2 1.02e8
## # ... with 2 more variables: TechReplicate <chr>, Log10Intensity <dbl>

Note that we don’t include parentheses at the end of our call to head() above. When piping into a function
with no additional arguments, you can call the function with or without parentheses (e.g. head or head()).

If you want to display more data, you can use the print() function at the end of your chain with the
argument n specifying the number of rows to display:
iprg %>%

mutate(Log10Intensity = log10(Intensity),
Log10Intensity2 = Log10Intensity * 2) %>%

print(n = 20)

## # A tibble: 36,321 x 9
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|D6V~ 26.8 JD_0~ Conditio~ 1 1.18e8
## 2 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.02e8
## 3 sp|D6V~ 26.6 JD_0~ Conditio~ 1 1.01e8
## 4 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.20e8
## 5 sp|D6V~ 26.8 JD_0~ Conditio~ 2 1.16e8
## 6 sp|D6V~ 26.6 JD_0~ Conditio~ 2 1.02e8
## 7 sp|D6V~ 26.6 JD_0~ Conditio~ 3 1.04e8
## 8 sp|D6V~ 26.5 JD_0~ Conditio~ 3 9.47e7
## 9 sp|D6V~ 26.5 JD_0~ Conditio~ 3 9.69e7
## 10 sp|D6V~ 26.6 JD_0~ Conditio~ 4 1.02e8
## 11 sp|D6V~ 26.4 JD_0~ Conditio~ 4 8.77e7
## 12 sp|D6V~ 26.7 JD_0~ Conditio~ 4 1.06e8
## 13 sp|O13~ 24.7 JD_0~ Conditio~ 1 2.76e7
## 14 sp|O13~ 24.7 JD_0~ Conditio~ 1 2.68e7
## 15 sp|O13~ 24.7 JD_0~ Conditio~ 1 2.76e7
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## 16 sp|O13~ 24.5 JD_0~ Conditio~ 2 2.41e7
## 17 sp|O13~ 24.7 JD_0~ Conditio~ 2 2.68e7
## 18 sp|O13~ 24.6 JD_0~ Conditio~ 2 2.51e7
## 19 sp|O13~ 24.4 JD_0~ Conditio~ 3 2.20e7
## 20 sp|O13~ 24.6 JD_0~ Conditio~ 3 2.59e7
## # ... with 3.63e+04 more rows, and 3 more variables: TechReplicate <chr>,
## # Log10Intensity <dbl>, Log10Intensity2 <dbl>

Challenge

Load the iprgna data that is available in the iprgna.rda file, and repeat the creation of a new
Log10Intensisty column.

Hint: this is a R Data object file (rda extension), that is loaded with the load function. It is
not a cvs file!

load("./data/iprgna.rda")
iprgna %>% mutate(Log10Intensity = log10(Intensity))

## # A tibble: 36,321 x 7
## Protein Run Condition BioReplicate Intensity TechReplicate
## <chr> <chr> <chr> <int> <dbl> <chr>
## 1 sp|D6V~ JD_0~ Conditio~ 1 NA B
## 2 sp|D6V~ JD_0~ Conditio~ 1 1.02e8 C
## 3 sp|D6V~ JD_0~ Conditio~ 1 NA A
## 4 sp|D6V~ JD_0~ Conditio~ 2 1.20e8 A
## 5 sp|D6V~ JD_0~ Conditio~ 2 NA B
## 6 sp|D6V~ JD_0~ Conditio~ 2 1.02e8 C
## 7 sp|D6V~ JD_0~ Conditio~ 3 1.04e8 A
## 8 sp|D6V~ JD_0~ Conditio~ 3 9.47e7 B
## 9 sp|D6V~ JD_0~ Conditio~ 3 9.69e7 C
## 10 sp|D6V~ JD_0~ Conditio~ 4 1.02e8 B
## # ... with 36,311 more rows, and 1 more variable: Log10Intensity <dbl>

The first few rows of the output are full of NAs, so if we wanted to remove those we could insert a filter()
in the chain:
iprgna %>%

filter(!is.na(Intensity)) %>%
mutate(Log10Intensity = log10(Intensity))

## # A tibble: 35,318 x 7
## Protein Run Condition BioReplicate Intensity TechReplicate
## <chr> <chr> <chr> <int> <dbl> <chr>
## 1 sp|D6V~ JD_0~ Conditio~ 1 1.02e8 C
## 2 sp|D6V~ JD_0~ Conditio~ 2 1.20e8 A
## 3 sp|D6V~ JD_0~ Conditio~ 2 1.02e8 C
## 4 sp|D6V~ JD_0~ Conditio~ 3 1.04e8 A
## 5 sp|D6V~ JD_0~ Conditio~ 3 9.47e7 B
## 6 sp|D6V~ JD_0~ Conditio~ 3 9.69e7 C
## 7 sp|D6V~ JD_0~ Conditio~ 4 1.02e8 B
## 8 sp|D6V~ JD_0~ Conditio~ 4 8.77e7 C
## 9 sp|D6V~ JD_0~ Conditio~ 4 1.06e8 A
## 10 sp|O13~ JD_0~ Conditio~ 1 2.76e7 B
## # ... with 35,308 more rows, and 1 more variable: Log10Intensity <dbl>

is.na() is a function that determines whether something is an NA. The ! symbol negates the result, so we’re
asking for everything that is not an NA.
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2.2.5 Split-apply-combine data analysis and the summarize() function

Many data analysis tasks can be approached using the split-apply-combine paradigm: split the data into
groups, apply some analysis to each group, and then combine the results. dplyr makes this very easy through
the use of the group_by() function.

2.2.5.1 The summarize() function

group_by() is often used together with summarize(), which collapses each group into a single-row summary
of that group. group_by() takes as arguments the column names that contain the categorical variables for
which you want to calculate the summary statistics. So to view the mean weight by sex:
iprgna %>%

group_by(Condition) %>%
summarize(mean_Intensity = mean(Intensity))

## # A tibble: 4 x 2
## Condition mean_Intensity
## <chr> <dbl>
## 1 Condition1 NA
## 2 Condition2 NA
## 3 Condition3 NA
## 4 Condition4 NA

Unfortunately, the mean of any vector that contains even a single missing value is NA. We need to remove
missing values before calculating the mean, which is done easily with the na.rm argument.
iprgna %>%

group_by(Condition) %>%
summarize(mean_Intensity = mean(Intensity, na.rm = TRUE))

## # A tibble: 4 x 2
## Condition mean_Intensity
## <chr> <dbl>
## 1 Condition1 65144912.
## 2 Condition2 64439756.
## 3 Condition3 62475797.
## 4 Condition4 63616488.

You can also group by multiple columns:
iprgna %>%

group_by(TechReplicate, BioReplicate) %>%
summarize(mean_Intensity = mean(Intensity, na.rm = TRUE))

## # A tibble: 12 x 3
## # Groups: TechReplicate [3]
## TechReplicate BioReplicate mean_Intensity
## <chr> <int> <dbl>
## 1 A 1 64891444.
## 2 A 2 63870255.
## 3 A 3 61648150.
## 4 A 4 63662564.
## 5 B 1 65563938.
## 6 B 2 65164270.
## 7 B 3 62758494.
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## 8 B 4 64196979.
## 9 C 1 64978764.
## 10 C 2 64283727.
## 11 C 3 63020774.
## 12 C 4 62984686.

2.2.5.2 Tallying

When working with data, it is also common to want to know the number of observations found for each factor
or combination of factors. For this, dplyr provides tally().
iprgna %>%

group_by(Condition) %>%
tally

## # A tibble: 4 x 2
## Condition n
## <chr> <int>
## 1 Condition1 9079
## 2 Condition2 9081
## 3 Condition3 9081
## 4 Condition4 9080

Here, tally() is the action applied to the groups created by group_by() and counts the total number of
records for each category.

Challenge

1. How many proteins of each technical replicate are there?

2. Use group_by() and summarize() to find the mean, min, and max intensity for each
condition.

3. What are the proteins with the highest intensity in each condition?
## Answer 1
iprgna %>%

group_by(TechReplicate) %>%
tally

## # A tibble: 3 x 2
## TechReplicate n
## <chr> <int>
## 1 A 12107
## 2 B 12106
## 3 C 12108
## Answer 2
iprgna %>%

filter(!is.na(Intensity)) %>%
group_by(Condition) %>%
summarize(mean_int = mean(Intensity),

min_int = min(Intensity),
max_int = max(Intensity))

## # A tibble: 4 x 4
## Condition mean_int min_int max_int
## <chr> <dbl> <dbl> <dbl>
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## 1 Condition1 65144912. 254608. 2841953257
## 2 Condition2 64439756. 259513. 2757471311
## 3 Condition3 62475797. 88409. 2659018724
## 4 Condition4 63616488. 84850. 2881057105
## Answer 3
iprgna %>%

filter(!is.na(Intensity)) %>%
group_by(Condition) %>%
filter(Intensity == max(Intensity)) %>%
arrange(Intensity)

## # A tibble: 4 x 6
## # Groups: Condition [4]
## Protein Run Condition BioReplicate Intensity TechReplicate
## <chr> <chr> <chr> <int> <dbl> <chr>
## 1 sp|P48589|R~ JD_06232014_~ Conditio~ 3 2.66e9 B
## 2 sp|P48589|R~ JD_06232014_~ Conditio~ 2 2.76e9 B
## 3 sp|P48589|R~ JD_06232014_~ Conditio~ 1 2.84e9 A
## 4 sp|P48589|R~ JD_06232014_~ Conditio~ 4 2.88e9 A

2.2.6 Saving and exporting data

We have seen how to lead a csv file with read.csv and read_csv. We can write a csv file with the write.csv
and write_csv functions. The difference is that the latter never writes row names and is faster.
write.csv(iprg, file = "iprg.csv")
write_csv(iprg, path = "iprg.csv")

We have seen how to load data with the load function. We can serialise such R Data objects with save.
save(iprg, file = "iprg.rda")

Finally, we can save this whole session you worked so hard on, i.e save the complete environment (all variables
at once) with save.image. Be careful though, as this can save a lot of unnecessary (temporary) data.
save.image(file = '02-rstats-all.rda')

Tip: The best way to save your work is to save the script that contains the exact command that lead to the
results! Or better, we can save and document our full analysis in an R markdown file!

2.3 Data visualisation

2.3.1 Histogram

Make a histogram of all the MS1 intensities, quantified by Skyline, for iPRG_example.
hist(iprg$Intensity)
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Histogram of iprg$Intensity
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Our histogram looks quite skewed. How does this look on log-scale?

Do you recognise this distribution? The distribution for log2-transformed intensities looks very similar to the
normal distribution. The advantage of working with normally distributed data is that we can apply a variety
of statistical tests to analyse and interpret our data. Let’s add a log2-scaled intensity column to our data so
we don’t have to transform the original intensities every time we need them.
hist(iprg$Log2Intensity,

xlab = "log2 transformed intensities",
main = "Histogram of iPRG data")
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Histogram of iPRG data
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In this case, we have duplicated information in our data, we have the raw and log-transformed data. This is
not necessary (and not advised), as it is straightforward to transform the data on the flight.
hist(log2(iprg$Intensity),

xlab = "log2 transformed intensities",
main = "Histogram of iPRG data")
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Histogram of iPRG data
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We look at the summary for the log2-transformed values including the value for the mean. Let’s fix that first.
summary(iprg$Log2Intensity)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.37 23.78 24.68 24.82 25.78 31.42

Challenge

Reproduce the histogram above but plotting the data on the log base 10 scale, using the log10
function. See also the more general log function.

hist(log10(iprg$Intensity))
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Histogram of log10(iprg$Intensity)
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2.3.2 Boxplot or box-and-whisker plot

Boxplots are extremely useful because they allow us to quickly visualise the data distribution, without making
assumptions of the distribution type (non-parametric). We can read up on what statistics the different
elements of a box-and-whisker represent in the R help files.
boxplot(iprg$Log2Intensity)
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The boxplot, however, shows us the intensities for all conditions and replicates. If we want to display the
data for, we have multile possibilities.

• We can first split the data, using the by function
int_by_run <- by(iprg$Log2Intensity, iprg$Run, c)
boxplot(int_by_run)
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* We can use the formula syntax
boxplot(Log2Intensity ~ Run, data = iprg)
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or, using directly the iprg2 wide format:
load("./data/iprg2.rda")
boxplot(iprg2)
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We can use the ggplot2 package that is very flexible to visualise data under different angles.

2.3.3 The ggplot2 package

ggplot2 is a plotting package that makes it simple to create complex plots from data in a data frame. It
provides a more programmatic interface for specifying what variables to plot, how they are displayed, and
general visual properties, so we only need minimal changes if the underlying data change or if we decide
to change from a bar plot to a scatterplot. This helps in creating publication quality plots with minimal
amounts of adjustments and tweaking.

2.3.3.1 Comparison between base graphics and ggplot2

Base graphics

Uses a canvas model a series of instructions that sequentially fill the plotting canvas. While this model is
very useful to build plots bits by bits bottom up, which is useful in some cases, it has some clear drawback:

• Layout choices have to be made without global overview over what may still be coming.
• Different functions for different plot types with different interfaces.
• No standard data input.
• Many routine tasks require a lot of boilerplate code.
• No concept of facets/lattices/viewports.
• Poor default colours.

The grammar of graphics

The components of ggplot2’s of graphics are
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1. A tidy dataset
2. A choice of geometric objects that servers as the visual representation of the data - for instance, points,

lines, rectangles, contours.
3. A description of how the variables in the data are mapped to visual properties (aesthetics) or the

geometric objects, and an associated scale (e.g. linear, logarithmic, polar)
4. A statistical summarisation rule
5. A coordinate system.
6. A facet specification, i.e. the use of several plots to look at the same data.

Fist of all, we need to load the ggplot2 package
library("ggplot2")

ggplot graphics are built step by step by adding new elements.

To build a ggplot we need to:

• bind the plot to a specific data frame using the data argument
ggplot(data = iprg)

• define aesthetics (aes), by selecting the variables to be plotted and the variables to define the presentation
such as plotting size, shape color, etc.

ggplot(data = iprg, aes(x = Run, y = Log2Intensity))

• add geoms – graphical representation of the data in the plot (points, lines, bars). To add a geom to the
plot use + operator

ggplot(data = iprg, aes(x = Run, y = Log2Intensity)) +
geom_boxplot()
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See the documentation page to explore the many available geoms.

The + in the ggplot2 package is particularly useful because it allows you to modify existing ggplot objects.
This means you can easily set up plot “templates” and conveniently explore different types of plots, so the
above plot can also be generated with code like this:
## Assign plot to a variable
ints_plot <- ggplot(data = iprg, aes(x = Run, y = Log2Intensity))

## Draw the plot
ints_plot + geom_boxplot()

Notes:

• Anything you put in the ggplot() function can be seen by any geom layers that you add (i.e., these
are universal plot settings). This includes the x and y axis you set up in aes().

• You can also specify aesthetics for a given geom independently of the aesthetics defined globally in the
ggplot() function.

• The + sign used to add layers must be placed at the end of each line containing a layer. If, instead, the
+ sign is added in the line before the other layer, ggplot2 will not add the new layer and will return an
error message.

Challenge

• Repeat the plot above but displaying the raw intensities.
• Log-10 transform the raw intensities on the flight when plotting.

http://ggplot2.tidyverse.org/reference/
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ggplot(data = iprg, aes(x = Run, y = Intensity)) + geom_boxplot()
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ggplot(data = iprg, aes(x = Run, y = log10(Intensity))) + geom_boxplot()
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## or
ggplot(data = iprg, aes(x = Run, y = Intensity)) +

geom_boxplot() +
scale_y_log10()
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2.3.4 Customising plots

First, let’s colour the boxplot based on the condition:
ggplot(data = iprg,

aes(x = Run, y = Log2Intensity,
fill = Condition)) +

geom_boxplot()
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Now let’s rename all axis labels and title, and rotate the x-axis labels 90 degrees. We can add those
specifications using the labs and theme functions of the ggplot2 package.
ggplot(aes(x = Run, y = Log2Intensity, fill = Condition),

data = iprg) +
geom_boxplot() +
labs(title = 'Log2 transformed intensity distribution per MS run',

y = 'Log2(Intensity)',
x = 'MS run') +

theme(axis.text.x = element_text(angle = 90))
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Log2 transformed intensity distribution per MS run

And easily switch from a boxplot to a violin plot representation by changing the geom type.
ggplot(aes(x = Run, y = Log2Intensity, fill = Condition),

data = iprg) +
geom_violin() +
labs(title = 'Log2 transformed intensity distribution per Subject',

y = 'Log2(Intensity)',
x = 'MS run') +

theme(axis.text.x = element_text(angle = 90))
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Log2 transformed intensity distribution per Subject

Finally, we can also overlay multiple geoms by simply adding them one after the other.
p <- ggplot(aes(x = Run, y = Log2Intensity, fill = Condition),

data = iprg)
p + geom_boxplot()
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p + geom_boxplot() + geom_jitter() ## not very usefull
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p + geom_jitter(alpha = 0.1) + geom_boxplot()
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Challenge

• Overlay a boxplot goem on top of a jitter geom for the raw or log-10 transformed intensities.
• Customise the plot as suggested above.

## Note how the log10 transformation is applied to both geoms
ggplot(data = iprg, aes(x = Run, y = log10(Intensity))) +

geom_jitter(alpha = 0.1) +
geom_boxplot()
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Finally, a very useful feature of ggplot2 is facetting, that defines how to subset the data into different
panels (facets).
names(iprg)

## [1] "Protein" "Log2Intensity" "Run" "Condition"
## [5] "BioReplicate" "Intensity" "TechReplicate"
ggplot(data = iprg,

aes(x = TechReplicate, y = Log2Intensity,
fill = Condition)) +

geom_boxplot() +
facet_grid(~ Condition)



66 CHAPTER 2. DATA ANALYSIS WITH R

Condition1 Condition2 Condition3 Condition4

A B C A B C A B C A B C

16

20

24

28

32

TechReplicate

Lo
g2

In
te

ns
ity

Condition

Condition1

Condition2

Condition3

Condition4

2.3.5 Saving your figures

You can save plots to a number of different file formats. PDF is by far the most common format because it’s
lightweight, cross-platform and scales up well but jpegs, pngs and a number of other file formats are also
supported. Let’s redo the last barplot but save it to the file system this time.

Let’s save the boxplot as pdf file.
pdf()
p + geom_jitter(alpha = 0.1) + geom_boxplot()
dev.off()

The default file name is Rplots.pdf. We can customise that file name specifying it by passing the file name,
as a character, to the pdf() function.

Challenge

Save a figure of your choice to a pdf file. Read the manual for the png function and save that
same image to a png file.

Tip: save your figures in a dedicated directory.

2.3.6 Saving our results

The iprg data frame, that was read from the csv file. This object can be easily regenerated using read.csv,
and hence doesn’t necessarily to be saved explicity.
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save(iprg, file = "./data/iprg.rda")
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Chapter 3

Introductory statistics with R

Objectives

• Randomization and basic statistics
• Statistical hypothesis testing: t-test
• Sample size calculation
• Analysis for categorical data
• Linear regression and correlation

3.1 Basic statistics

3.1.1 Randomization

3.1.1.1 Random selection of samples from a larger set

Let’s assume that we have the population with a total of 10 subjects. Suppose we label them from 1 to 10
and randomly would like to select 3 subjects we can do this using the sample function. When we run sample
another time, different subjects will be selected. Try this a couple times.
sample(10, 3)

## [1] 9 10 8
sample(10, 3)

## [1] 10 7 1

Now suppose we would like to select the same randomly selected samples every time, then we can use a
random seed number.
set.seed(3728)
sample(10, 3)

## [1] 1 9 10
set.seed(3728)
sample(10, 3)

## [1] 1 9 10

Let’s practice with fun example. Select two in our group member for coming early next Monday.

69
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group.member <- c('Cyril', 'Dan', 'Kylie', 'Meena', 'Sara', 'Ting', 'Tsung-Heng', 'Tyler')
sample(group.member, 2)

## [1] "Ting" "Sara"

3.1.1.2 Completely randomized order of MS runs

Let’s load iprg data first.
load('./data/iprg.rda')

We can also create a random order using all elements of iPRG dataset. Again, we can achieve this using
sample, asking for exactly the amount of samples in the subset. This time, each repetition gives us a different
order of the complete set.
msrun <- unique(iprg$Run)
msrun

## [1] "JD_06232014_sample1_B.raw" "JD_06232014_sample1_C.raw"
## [3] "JD_06232014_sample1-A.raw" "JD_06232014_sample2_A.raw"
## [5] "JD_06232014_sample2_B.raw" "JD_06232014_sample2_C.raw"
## [7] "JD_06232014_sample3_A.raw" "JD_06232014_sample3_B.raw"
## [9] "JD_06232014_sample3_C.raw" "JD_06232014_sample4_B.raw"
## [11] "JD_06232014_sample4_C.raw" "JD_06232014_sample4-A.raw"
## randomize order among all 12 MS runs
sample(msrun, length(msrun))

## [1] "JD_06232014_sample4_C.raw" "JD_06232014_sample3_A.raw"
## [3] "JD_06232014_sample4-A.raw" "JD_06232014_sample4_B.raw"
## [5] "JD_06232014_sample2_C.raw" "JD_06232014_sample1_C.raw"
## [7] "JD_06232014_sample2_A.raw" "JD_06232014_sample3_C.raw"
## [9] "JD_06232014_sample3_B.raw" "JD_06232014_sample1-A.raw"
## [11] "JD_06232014_sample1_B.raw" "JD_06232014_sample2_B.raw"
## different order will be shown.
sample(msrun, length(msrun))

## [1] "JD_06232014_sample1_B.raw" "JD_06232014_sample3_A.raw"
## [3] "JD_06232014_sample1-A.raw" "JD_06232014_sample2_A.raw"
## [5] "JD_06232014_sample3_B.raw" "JD_06232014_sample1_C.raw"
## [7] "JD_06232014_sample2_B.raw" "JD_06232014_sample3_C.raw"
## [9] "JD_06232014_sample4_C.raw" "JD_06232014_sample4-A.raw"
## [11] "JD_06232014_sample2_C.raw" "JD_06232014_sample4_B.raw"

3.1.1.3 Randomized block design

• Allow to remove known sources of variability that you are not interested in.

• Group conditions into blocks such that the conditions in a block are as similar as possible.

• Randomly assign samples with a block.

This particular dataset contains a total of 12 MS runs across 4 conditions, 3 technical replicates per
condition. Using the block.random function in the psych package, we can achieve randomized block designs!
block.random function makes random assignment of n subjects with an equal number in all of N conditions.
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library("psych") ## load the psych package

msrun <- unique(iprg[, c('Condition','Run')])
msrun

## # A tibble: 12 x 2
## Condition Run
## <chr> <chr>
## 1 Condition1 JD_06232014_sample1_B.raw
## 2 Condition1 JD_06232014_sample1_C.raw
## 3 Condition1 JD_06232014_sample1-A.raw
## 4 Condition2 JD_06232014_sample2_A.raw
## 5 Condition2 JD_06232014_sample2_B.raw
## 6 Condition2 JD_06232014_sample2_C.raw
## 7 Condition3 JD_06232014_sample3_A.raw
## 8 Condition3 JD_06232014_sample3_B.raw
## 9 Condition3 JD_06232014_sample3_C.raw
## 10 Condition4 JD_06232014_sample4_B.raw
## 11 Condition4 JD_06232014_sample4_C.raw
## 12 Condition4 JD_06232014_sample4-A.raw
## 4 Conditions of 12 MS runs randomly ordered
block.random(n = 12, c(Condition = 4))

## blocks Condition
## S1 1 4
## S2 1 1
## S3 1 2
## S4 1 3
## S5 2 2
## S6 2 4
## S7 2 1
## S8 2 3
## S9 3 4
## S10 3 1
## S11 3 3
## S12 3 2
block.random(n = 12, c(Condition = 4, BioReplicate=3))

## blocks Condition BioReplicate
## S1 1 3 3
## S2 1 1 3
## S3 1 1 2
## S4 1 4 2
## S5 1 1 1
## S6 1 3 2
## S7 1 2 2
## S8 1 2 3
## S9 1 4 3
## S10 1 2 1
## S11 1 3 1
## S12 1 4 1



72 CHAPTER 3. INTRODUCTORY STATISTICS WITH R

3.1.2 Basic statistical summaries

library(dplyr)

3.1.2.1 Calculate simple statistics

Let’s start data with one protein as an example and calculate the mean, standard deviation, standard error of
the mean across all replicates per condition. We then store all the computed statistics into a single summary
data frame for easy access.

We can use the aggregate function to compute summary statistics. aggregate splits the data into subsets,
computes summary statistics for each, and returns the result in a convenient form.
# check what proteins are in dataset, show all protein names
head(unique(iprg$Protein))

## [1] "sp|D6VTK4|STE2_YEAST" "sp|O13297|CET1_YEAST" "sp|O13329|FOB1_YEAST"
## [4] "sp|O13539|THP2_YEAST" "sp|O13547|CCW14_YEAST" "sp|O13563|RPN13_YEAST"
length(unique(iprg$Protein))

## [1] 3027
#distinct(iprg, Protein)
n_distinct(iprg$Protein)

## [1] 3027
# Let's start with one protein, named "sp|P44015|VAC2_YEAST"
oneproteindata <- iprg[iprg$Protein == "sp|P44015|VAC2_YEAST", ]

# there are 12 rows in oneproteindata
oneproteindata

## # A tibble: 12 x 7
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|P44~ 26.3 JD_0~ Conditio~ 1 82714388.
## 2 sp|P44~ 26.1 JD_0~ Conditio~ 1 72749239.
## 3 sp|P44~ 26.3 JD_0~ Conditio~ 1 82100518.
## 4 sp|P44~ 25.8 JD_0~ Conditio~ 2 59219741.
## 5 sp|P44~ 26.1 JD_0~ Conditio~ 2 72690802.
## 6 sp|P44~ 26.1 JD_0~ Conditio~ 2 71180513.
## 7 sp|P44~ 23.1 JD_0~ Conditio~ 3 9295260.
## 8 sp|P44~ 23.3 JD_0~ Conditio~ 3 10505591.
## 9 sp|P44~ 23.3 JD_0~ Conditio~ 3 10295788.
## 10 sp|P44~ 20.9 JD_0~ Conditio~ 4 2019205.
## 11 sp|P44~ 21.7 JD_0~ Conditio~ 4 3440629.
## 12 sp|P44~ 20.3 JD_0~ Conditio~ 4 1248781.
## # ... with 1 more variable: TechReplicate <chr>
# with dplyr
oneproteindata.bcp <- filter(iprg, Protein == "sp|P44015|VAC2_YEAST")
oneproteindata.bcp

## # A tibble: 12 x 7
## Protein Log2Intensity Run Condition BioReplicate Intensity
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## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|P44~ 26.3 JD_0~ Conditio~ 1 82714388.
## 2 sp|P44~ 26.1 JD_0~ Conditio~ 1 72749239.
## 3 sp|P44~ 26.3 JD_0~ Conditio~ 1 82100518.
## 4 sp|P44~ 25.8 JD_0~ Conditio~ 2 59219741.
## 5 sp|P44~ 26.1 JD_0~ Conditio~ 2 72690802.
## 6 sp|P44~ 26.1 JD_0~ Conditio~ 2 71180513.
## 7 sp|P44~ 23.1 JD_0~ Conditio~ 3 9295260.
## 8 sp|P44~ 23.3 JD_0~ Conditio~ 3 10505591.
## 9 sp|P44~ 23.3 JD_0~ Conditio~ 3 10295788.
## 10 sp|P44~ 20.9 JD_0~ Conditio~ 4 2019205.
## 11 sp|P44~ 21.7 JD_0~ Conditio~ 4 3440629.
## 12 sp|P44~ 20.3 JD_0~ Conditio~ 4 1248781.
## # ... with 1 more variable: TechReplicate <chr>
# If you want to see more details,
?aggregate

3.1.2.2 Calculate mean per groups

## splits 'oneproteindata' into subsets by 'Condition',
## then, compute 'FUN=mean' of 'log2Int'
sub.mean <- aggregate(Log2Intensity ~ Condition,

data = oneproteindata,
FUN = mean)

sub.mean

## Condition Log2Intensity
## 1 Condition1 26.23632
## 2 Condition2 26.00661
## 3 Condition3 23.25609
## 4 Condition4 20.97056
# with dplyr
sub.mean.bcp <- oneproteindata %>%

group_by(Condition) %>%
summarise(mean=mean(Log2Intensity))

sub.mean.bcp

## # A tibble: 4 x 2
## Condition mean
## <chr> <dbl>
## 1 Condition1 26.2
## 2 Condition2 26.0
## 3 Condition3 23.3
## 4 Condition4 21.0

3.1.2.3 Calculate SD (standard deviation) per groups

s =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2
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Challenge

Using the aggregate function above, calculate the standard deviation, by applying the median
function.

## The same as mean calculation above. 'FUN' is changed to 'sd'.
sub.median <- aggregate(Log2Intensity ~ Condition,

data = oneproteindata, FUN = median)
sub.median

## Condition Log2Intensity
## 1 Condition1 26.29089
## 2 Condition2 26.08498
## 3 Condition3 23.29555
## 4 Condition4 20.94536
# with dplyr
sub.median.bcp <- oneproteindata %>%

group_by(Condition) %>%
summarise(median=median(Log2Intensity))

sub.median.bcp

## # A tibble: 4 x 2
## Condition median
## <chr> <dbl>
## 1 Condition1 26.3
## 2 Condition2 26.1
## 3 Condition3 23.3
## 4 Condition4 20.9

Using the aggregate function above, calculate the standard deviation, by applying the sd function.
## The same as mean calculation above. 'FUN' is changed to 'sd'.
sub.sd <- aggregate(Log2Intensity ~ Condition,

data = oneproteindata, FUN = sd)
sub.sd

## Condition Log2Intensity
## 1 Condition1 0.10396539
## 2 Condition2 0.16268179
## 3 Condition3 0.09467798
## 4 Condition4 0.73140174
# with dplyr
sub.sd.bcp <- oneproteindata %>%

group_by(Condition) %>%
summarise(sd = sd(Log2Intensity))

sub.sd.bcp

## # A tibble: 4 x 2
## Condition sd
## <chr> <dbl>
## 1 Condition1 0.104
## 2 Condition2 0.163
## 3 Condition3 0.0947
## 4 Condition4 0.731



3.1. BASIC STATISTICS 75

3.1.2.4 Count the number of observation per groups

Challenge

Using the aggregate function above, count the number of observations per group with the length
function.

## The same as mean calculation. 'FUN' is changed 'length'.
sub.len <- aggregate(Log2Intensity ~ Condition,

data = oneproteindata,
FUN = length)

sub.len

## Condition Log2Intensity
## 1 Condition1 3
## 2 Condition2 3
## 3 Condition3 3
## 4 Condition4 3
# with dplyr
sub.len.bcp <- oneproteindata %>%

group_by(Condition) %>%
summarise(count = n())

sub.len.bcp

## # A tibble: 4 x 2
## Condition count
## <chr> <int>
## 1 Condition1 3
## 2 Condition2 3
## 3 Condition3 3
## 4 Condition4 3

3.1.2.5 Calculate SE (standard error of mean) per groups

SE =
√
s2

n

sub.se <- sqrt(sub.sd$Log2Intensity^2 / sub.len$Log2Intensity)
sub.se

## [1] 0.06002444 0.09392438 0.05466236 0.42227499

We can now make the summary table including the results above (mean, sd, se and length).
## paste0 : concatenate vectors after convering to character.
(grp <- paste0("Condition", 1:4))

## [1] "Condition1" "Condition2" "Condition3" "Condition4"
## It is equivalent to paste("Condition", 1:4, sep="")
summaryresult <- data.frame(Group = grp,

mean = sub.mean$Log2Intensity,
sd = sub.sd$Log2Intensity,
se = sub.se,
length = sub.len$Log2Intensity)

summaryresult
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## Group mean sd se length
## 1 Condition1 26.23632 0.10396539 0.06002444 3
## 2 Condition2 26.00661 0.16268179 0.09392438 3
## 3 Condition3 23.25609 0.09467798 0.05466236 3
## 4 Condition4 20.97056 0.73140174 0.42227499 3

Challenge

Make the same table as summaryresult with dplyr package.
summaryresult.dplyr <- oneproteindata %>%

group_by(Condition) %>%
summarise(mean = mean(Log2Intensity),

sd = sd(Log2Intensity),
length = n())

summaryresult.dplyr <- mutate(summaryresult.dplyr, se=sqrt(sd^2 / length))

summaryresult.dplyr

## # A tibble: 4 x 5
## Condition mean sd length se
## <chr> <dbl> <dbl> <int> <dbl>
## 1 Condition1 26.2 0.104 3 0.0600
## 2 Condition2 26.0 0.163 3 0.0939
## 3 Condition3 23.3 0.0947 3 0.0547
## 4 Condition4 21.0 0.731 3 0.422

3.1.3 Visualization with error bars for descriptive purpose

error bars can have a variety of meanings or conclusions if what they represent is not precisely specified. Below
we provide some examples of which types of error bars are common. We’re using the summary of protein
sp|P44015|VAC2_YEAST from the previous section and the ggplot2 package as it provides a convenient way
to make easily adaptable plots.
library(ggplot2)

# means without any errorbar
p <- ggplot(aes(x = Group, y = mean, colour = Group),

data = summaryresult)+
geom_point(size = 3)

p
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Let’s change a number of visual properties to make the plot more attractive.

• Let’s change the labels of x-axis and y-axis and title: labs(title="Mean", x="Condition",
y='Log2(Intensity)')

• Let’s change background color for white: theme_bw()
• Let’s change size or color of labels of axes and title, text of x-axis by using a theme
• Let’s change the position of legend (use 'none' to remove it)
• Let’s make the box for legend
• Let’s remove the box for legend key.

See also this post for options of theme, post for complete theme.
p2 <- p + labs(title = "Mean", x = "Group", y = 'Log2(Intensity)') +

theme_bw() +
theme(plot.title = element_text(size = 25, colour = "darkblue"),

axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
axis.text.x = element_text(size = 13),
legend.position = 'bottom',
legend.background = element_rect(colour = 'black'),
legend.key = element_rect(colour = 'white'))

p2

http://ggplot2.tidyverse.org/reference/theme.html
http://ggplot2.tidyverse.org/reference/ggtheme.html
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Let’s now add the standard deviation:
# mean with SD
p2 + geom_errorbar(aes(ymax = mean + sd, ymin = mean - sd), width = 0.1) +

labs(title="Mean with SD")
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Challenge

Add the standard error of the mean. Which one is smaller?
# mean with SE
p2 + geom_errorbar(aes(ymax = mean + se, ymin=mean - se), width = 0.1) +

labs(title="Mean with SE")
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## The SE is narrow than the SD!

Challenge

Add the standard error of the mean with black color.
# mean with SE
p2 + geom_errorbar(aes(ymax = mean + se, ymin=mean - se), width = 0.1, color='black') +

labs(title="Mean with SE")
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3.1.4 Working with statistical distributions

For each statistical distribution, we have function to compute

• density
• distribution function
• quantile function
• random generation

For the normale distribution norm, these are respectively

• dnorm
• pnorm
• qnorm
• rnorm

Let’s start by sampling 1000000 values from a normal distribution N(0, 1):
xn <- rnorm(1e6)
hist(xn, freq = FALSE)
rug(xn)
lines(density(xn), lwd = 2)
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By definition, the area under the density curve is 1. The area at the left of 0, 1, and 2 are respectively:
pnorm(0)

## [1] 0.5
pnorm(1)

## [1] 0.8413447
pnorm(2)

## [1] 0.9772499

To ask the inverse question, we use the quantile function. The obtain 0.5, 0.8413447 and 0.9772499 of our
distribution, we need means of:
qnorm(0.5)

## [1] 0
qnorm(pnorm(1))

## [1] 1
qnorm(pnorm(2))

## [1] 2
qnorm(0.05)

## [1] -1.644854



3.1. BASIC STATISTICS 83

Finally, the density function gives us the height at which we are for a given mean:
hist(xn, freq = FALSE)
lines(density(xn), lwd = 2)
points(0, dnorm(0), pch = 19, col = "red")
points(1, dnorm(1), pch = 1, col = "blue")
points(2, dnorm(2), pch = 4, col = "orange")

Histogram of xn
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3.1.5 Calculate the confidence interval

Now that we’ve covered the standard error of the mean and the standard deviation, let’s investigate how
we can add custom confidence intervals (CI) for our measurement of the mean. We’ll add these CI’s to the
summary results we previously stored for protein sp|P44015|VAC2_YEAST.

Confidence interval:

mean± (SE × α

2 quantile of t distribution)

To calculate the 95% confident interval, we need to be careful and set the quantile for two-sided. We need to
divide by two for error. For example, 95% confidence interval, right tail is 2.5% and left tail is 2.5%.
summaryresult$ciw.lower.95 <- summaryresult$mean -

qt(0.975, summaryresult$len - 1) * summaryresult$se
summaryresult$ciw.upper.95 <- summaryresult$mean +

qt(0.975, summaryresult$len - 1) * summaryresult$se
summaryresult
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## Group mean sd se length ciw.lower.95
## 1 Condition1 26.23632 0.10396539 0.06002444 3 25.97805
## 2 Condition2 26.00661 0.16268179 0.09392438 3 25.60248
## 3 Condition3 23.25609 0.09467798 0.05466236 3 23.02090
## 4 Condition4 20.97056 0.73140174 0.42227499 3 19.15366
## ciw.upper.95
## 1 26.49458
## 2 26.41073
## 3 23.49128
## 4 22.78746
summaryresult.dplyr %>% mutate(ciw.lower.95 = mean - qt(0.975, length-1)*se,

ciw.upper.95 = mean + qt(0.975, length-1)*se)

## # A tibble: 4 x 7
## Condition mean sd length se ciw.lower.95 ciw.upper.95
## <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 Condition1 26.2 0.104 3 0.0600 26.0 26.5
## 2 Condition2 26.0 0.163 3 0.0939 25.6 26.4
## 3 Condition3 23.3 0.0947 3 0.0547 23.0 23.5
## 4 Condition4 21.0 0.731 3 0.422 19.2 22.8
summaryresult.dplyr

## # A tibble: 4 x 5
## Condition mean sd length se
## <chr> <dbl> <dbl> <int> <dbl>
## 1 Condition1 26.2 0.104 3 0.0600
## 2 Condition2 26.0 0.163 3 0.0939
## 3 Condition3 23.3 0.0947 3 0.0547
## 4 Condition4 21.0 0.731 3 0.422
# mean with 95% two-sided confidence interval
ggplot(aes(x = Group, y = mean, colour = Group),

data = summaryresult) +
geom_point() +
geom_errorbar(aes(ymax = ciw.upper.95, ymin = ciw.lower.95), width = 0.1) +
labs(title="Mean with 95% confidence interval", x="Condition", y='Log2(Intensity)') +
theme_bw() +
theme(plot.title = element_text(size=25, colour="darkblue"),

axis.title.x = element_text(size=15),
axis.title.y = element_text(size=15),
axis.text.x = element_text(size=13),
legend.position = 'bottom',
legend.background = element_rect(colour = 'black'),
legend.key = element_rect(colour='white'))
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Challenges

Replicate the above for the 99% two-sided confidence interval.
# mean with 99% two-sided confidence interval
summaryresult$ciw.lower.99 <- summaryresult$mean - qt(0.995,summaryresult$len-1) * summaryresult$se
summaryresult$ciw.upper.99 <- summaryresult$mean + qt(0.995,summaryresult$len-1) * summaryresult$se
summaryresult

## Group mean sd se length ciw.lower.95
## 1 Condition1 26.23632 0.10396539 0.06002444 3 25.97805
## 2 Condition2 26.00661 0.16268179 0.09392438 3 25.60248
## 3 Condition3 23.25609 0.09467798 0.05466236 3 23.02090
## 4 Condition4 20.97056 0.73140174 0.42227499 3 19.15366
## ciw.upper.95 ciw.lower.99 ciw.upper.99
## 1 26.49458 25.64058 26.83205
## 2 26.41073 25.07442 26.93879
## 3 23.49128 22.71357 23.79860
## 4 22.78746 16.77955 25.16157
ggplot(aes(x = Group, y = mean, colour = Group),

data = summaryresult) +
geom_point() +
geom_errorbar(aes(ymax = ciw.upper.99, ymin=ciw.lower.99), width=0.1) +
labs(title="Mean with 99% confidence interval", x="Condition", y='Log2(Intensity)') +
theme_bw()+
theme(plot.title = element_text(size=25, colour="darkblue"),

axis.title.x = element_text(size=15),
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axis.title.y = element_text(size=15),
axis.text.x = element_text(size=13),
legend.position = 'bottom',
legend.background = element_rect(colour='black'),
legend.key = element_rect(colour='white'))
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Some comments

• Error bars with SD and CI are overlapping between groups!

• Error bars for the SD show the spread of the population while error bars based on SE reflect the
uncertainty in the mean and depend on the sample size.

• Confidence intervals of n on the other hand mean that the intervals capture the population mean n
percent of the time.

• When the sample size increases, CI and SE are getting closer to each other.

3.1.6 Saving our results

We have two objects that contain all the information that we have generated so far:

• The summaryresults and summaryresults.dplyr objects, that contains all the summary statistics.
save(summaryresult, file = "./data/summaryresults.rda")
save(summaryresult.dplyr, file = "./data/summaryresults.dplyr.rda")
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We can also save the summary result as a csv file using the write.csv function:
write.csv(sumamryresult, file = "./data/summary.csv")

Tip: Exporting to csv is useful to share your work with collaborators that do not use R, but for many
continous work in R, to assure data validity accords platforms, the best format is rda.

3.2 Statistical hypothesis test

First, we are going to prepare the session for further analyses.
load("./data/summaryresults.rda")
load("./data/iprg.rda")

3.2.1 Two sample t-test for one protein with one feature

Now, we’ll perform a t-test whether protein sp|P44015|VAC2_YEAST has a change in abundance between
Condition 1 and Condition 2.

Hypothesis

• H0: no change in abundance, mean(Condition1) - mean(Condition2) = 0
• Ha: change in abundance, mean(Condition1) - mean(Condition 2) 6= 0

Statistics

• Observed t = difference of group means
estimate of variation = (mean1−mean2)

SE ∼ tα/2,df

• Standard error, SE =
√

s2
1
n1

+ s2
2
n2

with

• ni: number of replicates
• s2

i = 1
ni−1

∑
(Yij − Ȳi·)2: sample variance

Data preparation

## Let's start with one protein, named "sp|P44015|VAC2_YEAST"
oneproteindata <- iprg[iprg$Protein == "sp|P44015|VAC2_YEAST", ]

## Then, get two conditions only, because t.test only works for two groups (conditions).
oneproteindata.condition12 <- oneproteindata[oneproteindata$Condition %in%

c('Condition1', 'Condition2'), ]
oneproteindata.condition12

## # A tibble: 6 x 7
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|P44~ 26.3 JD_0~ Conditio~ 1 82714388.
## 2 sp|P44~ 26.1 JD_0~ Conditio~ 1 72749239.
## 3 sp|P44~ 26.3 JD_0~ Conditio~ 1 82100518.
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## 4 sp|P44~ 25.8 JD_0~ Conditio~ 2 59219741.
## 5 sp|P44~ 26.1 JD_0~ Conditio~ 2 72690802.
## 6 sp|P44~ 26.1 JD_0~ Conditio~ 2 71180513.
## # ... with 1 more variable: TechReplicate <chr>
table(oneproteindata.condition12[, c("Condition", "BioReplicate")])

## BioReplicate
## Condition 1 2
## Condition1 3 0
## Condition2 0 3
## with dplyr
## Let's start with one protein, named "sp|P44015|VAC2_YEAST"
oneproteindata <- filter(iprg, Protein == "sp|P44015|VAC2_YEAST")

## Then, get two conditions only, because t.test only works for two groups (conditions).
oneproteindata.subset <- filter(oneproteindata,

Condition %in% c('Condition1', 'Condition2'))
oneproteindata.subset

## # A tibble: 6 x 7
## Protein Log2Intensity Run Condition BioReplicate Intensity
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 sp|P44~ 26.3 JD_0~ Conditio~ 1 82714388.
## 2 sp|P44~ 26.1 JD_0~ Conditio~ 1 72749239.
## 3 sp|P44~ 26.3 JD_0~ Conditio~ 1 82100518.
## 4 sp|P44~ 25.8 JD_0~ Conditio~ 2 59219741.
## 5 sp|P44~ 26.1 JD_0~ Conditio~ 2 72690802.
## 6 sp|P44~ 26.1 JD_0~ Conditio~ 2 71180513.
## # ... with 1 more variable: TechReplicate <chr>
table(oneproteindata.subset[, c("Condition", "BioReplicate")])

## BioReplicate
## Condition 1 2
## Condition1 3 0
## Condition2 0 3

If we want to remove the levels that are not relevant anymore, we can use droplevels:
oneproteindata.subset <- droplevels(oneproteindata.subset)
table(oneproteindata.subset[, c("Condition", "BioReplicate")])

## BioReplicate
## Condition 1 2
## Condition1 3 0
## Condition2 0 3

To perform the t-test, we use the t.test function. Let’s first familiarise ourselves with it by looking that the
manual
?t.test

And now apply to to our data
# t test for different abundance (log2Int) between Groups (Condition)
result <- t.test(Log2Intensity ~ Condition,

data = oneproteindata.subset,
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var.equal = FALSE)

result

##
## Welch Two Sample t-test
##
## data: Log2Intensity by Condition
## t = 2.0608, df = 3.4001, p-value = 0.1206
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1025408 0.5619598
## sample estimates:
## mean in group Condition1 mean in group Condition2
## 26.23632 26.00661

Challenge

Repeat the t-test above but with calculating a 90% confidence interval for the log2 fold change.

3.2.2 The htest class

The t.test function, like other hypothesis testing function, return a result of a type we haven’t encountered
yet, the htest class:
class(result)

## [1] "htest"

which stores typical results from such tests. Let’s have a more detailed look at what information we can learn
from the results our t-test. When we type the name of our result object, we get a short textual summary,
but the object contains more details:
names(result)

## [1] "statistic" "parameter" "p.value" "conf.int" "estimate"
## [6] "null.value" "stderr" "alternative" "method" "data.name"

and we can access each of these by using the $ operator, like we used to access a single column from a
data.frame, but the htest class is not a data.frame (it’s actually a list). For example, to access the
group means, we would use
result$estimate

## mean in group Condition1 mean in group Condition2
## 26.23632 26.00661

Challenge

• Calculate the (log2-transformed) fold change between groups
• Extract the value of the t-statistics
• Calculate the standard error (fold-change/t-statistics)
• Extract the degrees of freedom (parameter)
• Extract the p values
• Extract the 95% confidence intervals

We can also manually compute our t-test statistic using the formulas we descibed above and compare it with
the summaryresult.

Recall the summaryresult we generated last section.
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summaryresult

## Group mean sd se length ciw.lower.95
## 1 Condition1 26.23632 0.10396539 0.06002444 3 25.97805
## 2 Condition2 26.00661 0.16268179 0.09392438 3 25.60248
## 3 Condition3 23.25609 0.09467798 0.05466236 3 23.02090
## 4 Condition4 20.97056 0.73140174 0.42227499 3 19.15366
## ciw.upper.95 ciw.lower.99 ciw.upper.99
## 1 26.49458 25.64058 26.83205
## 2 26.41073 25.07442 26.93879
## 3 23.49128 22.71357 23.79860
## 4 22.78746 16.77955 25.16157
summaryresult12 <- summaryresult[1:2, ]

## test statistic, It is the same as 'result$statistic' above.
diff(summaryresult12$mean) ## different sign, but absolute values are same as result$estimate[1]-result$estimate[2]

## [1] -0.2297095
sqrt(sum(summaryresult12$sd^2/summaryresult12$length)) ## same as stand error

## [1] 0.1114662
## the t-statistic : sign is different
diff(summaryresult12$mean)/sqrt(sum(summaryresult12$sd^2/summaryresult12$length))

## [1] -2.060799

3.2.3 Re-calculating the p values

Referring back to our t-test results above, we can manually calculate the one- and two-side tests p-values
using the t-statistics and the test parameter (using the pt function).

Our result t statistic was 2.0607988 (accessible with result$statistic). Let’s start by visualising it along a
t distribution. Let’s create data from such a distribution, making sure we set to appropriate parameter.
## generate 10^5 number with the same degree of freedom for distribution.
xt <- rt(1e5, result$parameter)
plot(density(xt), xlim = c(-10, 10))
abline(v = result$statistic, col = "red") ## where t statistics are located.
abline(h = 0, col = "gray") ## horizontal line at 0
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The area on the left of that point is given by pt(result$statistic, result$parameter), which is
0.939693. The p-value for a one-sided test, which is ** the area on the right** of red line, is this given by
1 - pt(result$statistic, result$parameter)

## t
## 0.06030697

And the p-value for a two-sided test is
2 * (1 - pt(result$statistic, result$parameter))

## t
## 0.1206139

which is the same as the one calculated by the t-test.

3.2.4 Choosing a model

The decision of which statistical model is appropriate for a given set of observations depends on the type of
data that have been collected.

• Quantitative response with quantitative predictors : regression model

• Categorical response with quantitative predictors : logistic regression model for bivariate categorical
response (e.g., Yes/No, dead/alive), multivariate logistic regression model when the response variable
has more than two possible values.
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• Quantitative response with categorical predictors : ANOVA model (quantitative response across several
populations defined by one or more categorical predictor variables)

• Categorical response with categorical predictors : contingency table that can be used to draw conclusions
about the relationships between variables.

See also Bremer & Doerge, Using R at the Bench : Step-by-Step Data Analytics for Biologists, cold Spring
Harbor LaboratoryPress, 2015.

3.3 Sample size calculation

To calculate the required sample size, you’ll need to know four things:

• α: confidence level
• power: 1 - β, where β is probability of a true positive discovery
• ∆: anticipated fold change
• σ: anticipated variance

R code

Assuming equal varaince and number of samples across groups, the following formula is used for sample size
estimation:

2σ2

n
≤ ( ∆

z1−β + z1−α/2
)2

library("pwr")

## ?pwr.t.test

# Significance level alpha
alpha <- 0.05

# Power = 1 - beta
power <- 0.95

# anticipated log2 fold change
delta <- 1

# anticipated variability
sigma <- 0.9

# Effect size
# It quantifies the size of the difference between two groups
d <- delta/sigma

#Sample size estimation
pwr.t.test(d = d, sig.level = alpha, power = power, type = 'two.sample')

##
## Two-sample t test power calculation
##
## n = 22.06036

https://www.amazon.com/dp/1621821129/ref=olp_product_details?_encoding=UTF8&me=
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## d = 1.111111
## sig.level = 0.05
## power = 0.95
## alternative = two.sided
##
## NOTE: n is number in *each* group

Challenge

• Calculate power with 10 samples and the same parameters as above.

Let’s investigate the effect of required fold change and variance on the sample size estimation.
# anticipated log2 fold change
delta <- seq(0.1, 0.7, .1)
nd <- length(delta)

# anticipated variability
sigma <- seq(0.1,0.5,.1)
ns <- length(sigma)

# obtain sample sizes
samsize <- matrix(0, nrow=ns*nd, ncol = 3)
counter <- 0
for (i in 1:nd){

for (j in 1:ns){
result <- pwr.t.test(d = delta[i] / sigma[j],

sig.level = alpha,
power = power,
type = "two.sample")

counter <- counter + 1
samsize[counter, 1] <- delta[i]
samsize[counter, 2] <- sigma[j]
samsize[counter, 3] <- ceiling(result$n)

}
}
colnames(samsize) <- c("desiredlog2FC", "variability", "samplesize")

## visualization
samsize <- as.data.frame(samsize)
samsize$variability <- as.factor(samsize$variability)
ggplot(data=samsize, aes(x=desiredlog2FC, y=samplesize, group = variability, colour = variability)) +

geom_line() +
geom_point(size=2, shape=21, fill="white") +
labs(title="Significance level=0.05, Power=0.95", x="Anticipated log2 fold change", y='Sample Size (n)') +
theme(plot.title = element_text(size=20, colour="darkblue"),

axis.title.x = element_text(size=15),
axis.title.y = element_text(size=15),
axis.text.x = element_text(size=13))
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3.4 Linear models and correlation

When considering correlations and modelling data, visualization is key.

Let’s use the famous Anscombe’s quartet data as a motivating example. This data is composed of 4 pairs of
values, (x1, y1) to (x4, y4):

x1 x2 x3 x4 y1 y2 y3 y4
10 10 10 8 8.04 9.14 7.46 6.58
8 8 8 8 6.95 8.14 6.77 5.76
13 13 13 8 7.58 8.74 12.74 7.71
9 9 9 8 8.81 8.77 7.11 8.84
11 11 11 8 8.33 9.26 7.81 8.47
14 14 14 8 9.96 8.10 8.84 7.04
6 6 6 8 7.24 6.13 6.08 5.25
4 4 4 19 4.26 3.10 5.39 12.50
12 12 12 8 10.84 9.13 8.15 5.56
7 7 7 8 4.82 7.26 6.42 7.91
5 5 5 8 5.68 4.74 5.73 6.89

Each of these x and y sets have the same variance, mean and correlation:

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
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1 2 3 4
var(x) 11.0000000 11.0000000 11.0000000 11.0000000
mean(x) 9.0000000 9.0000000 9.0000000 9.0000000
var(y) 4.1272691 4.1276291 4.1226200 4.1232491
mean(y) 7.5009091 7.5009091 7.5000000 7.5009091
cor(x,y) 0.8164205 0.8162365 0.8162867 0.8165214

But. . .

While the residuals of the linear regression clearly indicate fundamental differences in these data, the most
simple and straightforward approach is visualisation to highlight the fundamental differences in the datasets.
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See also another, more recent example: The Datasaurus Dozen dataset.

3.4.1 Correlation

Here is an example where a wide format comes very handy. We are going to convert our iPRG data using the
spread function from the tidyr package:
library("tidyr")
iprg2 <- spread(iprg[, 1:3], Run, Log2Intensity)
rownames(iprg2) <- iprg2$Protein
iprg2 <- iprg2[, -1]

And lets focus on the 3 runs, i.e. 2 replicates from condition 1 and 1 replicate from condition 4.
x <- iprg2[, c(1, 2, 10)]
head(x)

https://www.autodeskresearch.com/publications/samestats
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## # A tibble: 6 x 3
## JD_06232014_sample1_B.r~ JD_06232014_sample1_C.r~ JD_06232014_sample4_B.~
## <dbl> <dbl> <dbl>
## 1 26.8 26.6 26.6
## 2 24.7 24.7 24.6
## 3 23.4 24.0 23.2
## 4 27.5 27.4 26.7
## 5 27.2 26.8 27.0
## 6 26.1 26.3 26.1
pairs(x)
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We can use the cor function to calculate the Pearson correlation between two vectors of the same length
(making sure the order is correct), or a dataframe. But, we have missing values in the data, which will stop
us from calculating the correlation:
cor(x)

## JD_06232014_sample1_B.raw
## JD_06232014_sample1_B.raw 1
## JD_06232014_sample1_C.raw NA
## JD_06232014_sample4_B.raw NA
## JD_06232014_sample1_C.raw
## JD_06232014_sample1_B.raw NA
## JD_06232014_sample1_C.raw 1
## JD_06232014_sample4_B.raw NA
## JD_06232014_sample4_B.raw
## JD_06232014_sample1_B.raw NA
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## JD_06232014_sample1_C.raw NA
## JD_06232014_sample4_B.raw 1

We first need to omit the proteins/rows that contain missing values
x2 <- na.omit(x)
cor(x2)

## JD_06232014_sample1_B.raw
## JD_06232014_sample1_B.raw 1.0000000
## JD_06232014_sample1_C.raw 0.9722642
## JD_06232014_sample4_B.raw 0.9702758
## JD_06232014_sample1_C.raw
## JD_06232014_sample1_B.raw 0.9722642
## JD_06232014_sample1_C.raw 1.0000000
## JD_06232014_sample4_B.raw 0.9585676
## JD_06232014_sample4_B.raw
## JD_06232014_sample1_B.raw 0.9702758
## JD_06232014_sample1_C.raw 0.9585676
## JD_06232014_sample4_B.raw 1.0000000

3.4.2 A note on correlation and replication

It is often assumed that high correlation is a halmark of good replication. Rather than focusing on the
correlation of the data, a better measurement would be to look a the log2 fold-changes, i.e. the distance
between or repeated measurements. The ideal way to visualise this is on an MA-plot:
par(mfrow = c(1, 2))
r1 <- x2[[1]]
r2 <- x2[[2]]
M <- r1 - r2
A <- (r1 + r2)/2
plot(A, M); grid()
suppressPackageStartupMessages(library("affy"))
affy::ma.plot(A, M)
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See also this post on the Simply Statistics blog.

http://simplystatistics.org/2015/08/12/correlation-is-not-a-measure-of-reproducibility/
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3.4.3 Linear modelling

abline(0, 1) can be used to add a line with intercept 0 and slop 1. It we want to add the line that models
the data linearly, we can calculate the parameters using the lm function:
lmod <- lm(r2 ~ r1)
summary(lmod)

##
## Call:
## lm(formula = r2 ~ r1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2943 -0.1321 -0.0111 0.1103 3.4976
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.834552 0.105239 7.93 3.05e-15 ***
## r1 0.965778 0.004225 228.56 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3758 on 3023 degrees of freedom
## Multiple R-squared: 0.9453, Adjusted R-squared: 0.9453
## F-statistic: 5.224e+04 on 1 and 3023 DF, p-value: < 2.2e-16

which can be used to add the adequate line that reflects the (linear) relationship between the two data
plot(r1, r2)
abline(lmod, col = "red")
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As we have seen in the beginning of this section, it is essential not to rely solely on the correlation value, but
look at the data. This also holds true for linear (or any) modelling, which can be done by plotting the model:
par(mfrow = c(2, 2))
plot(lmod)
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• Cook’s distance is a commonly used estimate of the influence of a data point when performing a
least-squares regression analysis and can be used to highlight points that particularly influence the
regression.

• Leverage quantifies the influence of a given observation on the regression due to its location in the space
of the inputs.

See also ?influence.measures.

Challenge

1. Take any of the iprg2 replicates, model and plot their linear relationship. The iprg2 data
is available as an rda file, or regenerate it as shown above.

2. The Anscombe quartet is available as anscombe. Load it, create a linear model for one
(xi, yi) pair of your choice and visualise/check the model.

x3 <- anscombe[, 3]
y3 <- anscombe[, 7]
lmod <- lm(y3 ~ x3)
summary(lmod)

##
## Call:
## lm(formula = y3 ~ x3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025 1.1245 2.670 0.02562 *
## x3 0.4997 0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
par(mfrow = c(2, 2))
plot(lmod)
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Finally, let’s conclude by illustrating how ggplot2 can very elegantly be used to produce similar plots, with
useful annotations:
library("ggplot2")
dfr <- data.frame(r1, r2, M, A)
p <- ggplot(aes(x = r1, y = r2), data = dfr) + geom_point()
p + geom_smooth(method = "lm") +

geom_quantile(colour = "red")

## Warning: Computation failed in `stat_quantile()`:
## Package `quantreg` required for `stat_quantile`.
## Please install and try again.
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Challenge

Replicate the MA plot above using ggplot2. Then add a non-parametric lowess regression using
geom_smooth().

p <- ggplot(aes(x = A, y = M), data = dfr) + geom_point()
p + geom_smooth() + geom_quantile(colour = "red")

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

## Warning: Computation failed in `stat_quantile()`:
## Package `quantreg` required for `stat_quantile`.
## Please install and try again.
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Supplementary information: Working with statistical distributions

For each statistical distribution, we have function to compute

• density
• distribution function
• quantile function
• random generation

For the normale distribution norm, these are respectively

• dnorm
• pnorm
• qnorm
• rnorm

Let’s start by sampling 10000 values from a normal distribution N(0, 1):
xn <- rnorm(1e6)
hist(xn, freq = FALSE)
rug(xn)
lines(density(xn), lwd = 2)
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By definition, the area under the density curve is 1. The area at the left of 0, 1, and 2 are respectively:
pnorm(0)

## [1] 0.5
pnorm(1)

## [1] 0.8413447
pnorm(2)

## [1] 0.9772499

To ask the inverse question, we use the quantile function. The obtain 0.5, 0.8413447 and 0.9772499 of our
distribution, we need means of:
qnorm(0.5)

## [1] 0
qnorm(pnorm(1))

## [1] 1
qnorm(pnorm(2))

## [1] 2

Finally, the density function gives us the height at which we are for a given mean:
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hist(xn, freq = FALSE)
lines(density(xn), lwd = 2)
points(0, dnorm(0), pch = 19, col = "red")
points(1, dnorm(1), pch = 19, col = "red")
points(2, dnorm(2), pch = 19, col = "red")
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