plotDensity-methods.Rd
These methods plot the distribution of several parameters of interest
for the different precursor charges for "MSnExp"
experiment.
The methods make use the ggplot2
system. An object of class
'ggplot' is returned invisibly.
An object of class "MSnExp"
or and
'data.frame'. In the latter case, the data frame must have numerical
columns named 'charge' and one of 'precursor.mz', 'peaks.count' or 'ionCount',
depending on the z
parameter.
Such a data frame is typically generated using the
header
method on "MSnExp"
object.
A character indicating which parameter's densitiy to plot. One of, possibly abreviated, "ionCount" (total ion count), "peaks.count" (peaks count) or "precursor.mz" (precursor MZ).
Logical, whether to log transform the data (default is 'FALSE').
A logical indicating whether the plot should be printed (default is 'TRUE').
signature(object = "MSnExp", ...)
Plots a 'MSnExp' summary.
signature(object = "data.frame", ...)
Plots a summary of the 'MSnExp' experiment described by the data frame.
The plot2d
and plotDensity
methods for
other QC plots.
itraqdata
#> MSn experiment data ("MSnExp")
#> Object size in memory: 1.9 Mb
#> - - - Spectra data - - -
#> MS level(s): 2
#> Number of spectra: 55
#> MSn retention times: 19:09 - 50:18 minutes
#> - - - Processing information - - -
#> Data loaded: Wed May 11 18:54:39 2011
#> Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]
#> MSnbase version: 1.1.22
#> - - - Meta data - - -
#> phenoData
#> rowNames: 1
#> varLabels: sampleNames sampleNumbers
#> varMetadata: labelDescription
#> Loaded from:
#> dummyiTRAQ.mzXML
#> protocolData: none
#> featureData
#> featureNames: X1 X10 ... X9 (55 total)
#> fvarLabels: spectrum ProteinAccession ProteinDescription
#> PeptideSequence
#> fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
plotDensity(itraqdata,z="ionCount")
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
plotDensity(itraqdata,z="peaks.count")
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
plotDensity(itraqdata,z="precursor.mz")
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.