R/tidies.R
, R/arrange.R
, R/filter.R
, and 4 more
tidies.Rd
The `tidyms` package implements tidy principles as defined in the tidyverse packages to omics-type data classes, with (currently at least), an emphasis on quantitative proteomics data.
# S3 method for eSet arrange(.data, ...) # S3 method for eSet filter(.data, ...) # S3 method for eSet group_by(.data, ..., add = FALSE) # S3 method for eSet select(.data, ...) # S3 method for Grouped_eSet summarise(.data, ...) # S3 method for eSet as_tibble(x, ..., fcols = fvarLabels(x))
.data | An object of class MSnbase::MSnSet. |
---|---|
... | Expressions evaluated in the context of the object's
feature and sample variable and passed to the |
add | As in the original `dplyr::group_by`function, when ‘add = FALSE’, the default, `group_by()` will override existing groups. To add to the existing groups, use `add = TRUE`. |
x | An object of class |
fcols | Feature variables to be added. Default is to add all
(i.e. |
The vignette provides additional details and examples.
See the original `dplyr` manual pages for details.
Useful links: