Skip to contents

These functions take an instance of class "MSnSet" and sets randomly selected values to NA.

Usage

makeNaData(object, nNA, pNA, exclude)

makeNaData2(object, nRows, nNAs, exclude)

whichNA(x)

Arguments

object

An instance of class MSnSet.

nNA

The absolute number of missing values to be assigned.

pNA

The proportion of missing values to be assignmed.

exclude

A vector to be used to subset object, defining rows that should not be used to set NAs.

nRows

The number of rows for each set.

nNAs

The number of missing values for each set.

x

A matrix or an instance of class MSnSet.

Value

An instance of class MSnSet, as object, but with the appropriate number/proportion of missing values. The returned object has an additional feature meta-data columns, nNA

Details

makeNaData randomly selects a number nNA (or a proportion pNA) of cells in the expression matrix to be set to NA.

makeNaData2 will select length(nRows) sets of rows from object, each with nRows[i] rows respectively. The first set will be assigned nNAs[1] missing values, the second nNAs[2], ... As opposed to makeNaData, this permits to control the number of NAs per rows.

The whichNA can be used to extract the indices of the missing values, as illustrated in the example.

Author

Laurent Gatto

Examples

## Example 1
library(pRolocdata)
data(dunkley2006)
sum(is.na(dunkley2006))
#> [1] 0
dunkleyNA <- makeNaData(dunkley2006, nNA = 150)
processingData(dunkleyNA)
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Set 150 values to NA Tue Oct 15 15:26:53 2024 
#>  MSnbase version: 1.17.12 
sum(is.na(dunkleyNA))
#> [1] 150
table(fData(dunkleyNA)$nNA)
#> 
#>   0   1   2   3 
#> 558 113  17   1 
naIdx <- whichNA(dunkleyNA)
head(naIdx)
#>      [,1] [,2]
#> [1,]    4    1
#> [2,]   57    1
#> [3,]  110    1
#> [4,]  119    1
#> [5,]  147    1
#> [6,]  273    1
## Example 2
dunkleyNA <- makeNaData(dunkley2006, nNA = 150, exclude = 1:10)
processingData(dunkleyNA)
#> - - - Processing information - - -
#> Set 150 values to NA Tue Oct 15 15:26:53 2024
#>   (excluding 10 features) 
#>  MSnbase version: 1.17.12 
table(fData(dunkleyNA)$nNA[1:10])
#> 
#>  0 
#> 10 
table(fData(dunkleyNA)$nNA)
#> 
#>   0   1   2 
#> 549 130  10 
## Example 3
nr <- rep(10, 5)
na <- 1:5
x <- makeNaData2(dunkley2006[1:100, 1:5],
                 nRows = nr,
                 nNAs = na)
processingData(x)
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Subset [689,16][100,5] Tue Oct 15 15:26:53 2024 
#> Set (1,2,3,4,5) NAs in (10,10,10,10,10) rows,
#>   respectively Tue Oct 15 15:26:53 2024 
#>  MSnbase version: 1.17.12 
(res <- table(fData(x)$nNA))
#> 
#>  0  1  2  3  4  5 
#> 50 10 10 10 10 10 
stopifnot(as.numeric(names(res)[-1]) ==  na)
stopifnot(res[-1] ==  nr)
## Example 3
nr2 <- c(5, 12, 11, 8)
na2 <- c(3, 8, 1, 4)
x2 <- makeNaData2(dunkley2006[1:100, 1:10],
                  nRows = nr2,
                  nNAs = na2)
processingData(x2)
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Subset [689,16][100,10] Tue Oct 15 15:26:53 2024 
#> Set (3,8,1,4) NAs in (5,12,11,8) rows,
#>   respectively Tue Oct 15 15:26:53 2024 
#>  MSnbase version: 1.17.12 
(res2 <- table(fData(x2)$nNA))
#> 
#>  0  1  3  4  8 
#> 64 11  5  8 12 
stopifnot(as.numeric(names(res2)[-1]) ==  sort(na2))
stopifnot(res2[-1] ==  nr2[order(na2)])
## Example 5
nr3 <- c(5, 12, 11, 8)
na3 <- c(3, 8, 1, 3)
x3 <- makeNaData2(dunkley2006[1:100, 1:10],
                  nRows = nr3,
                  nNAs = na3)
processingData(x3)
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Subset [689,16][100,10] Tue Oct 15 15:26:53 2024 
#> Set (3,8,1,3) NAs in (5,12,11,8) rows,
#>   respectively Tue Oct 15 15:26:53 2024 
#>  MSnbase version: 1.17.12 
(res3 <- table(fData(x3)$nNA))
#> 
#>  0  1  3  8 
#> 64 11 13 12