Read 'MSnSet'
readMSnSet.Rd
This function reads data files to generate an
MSnSet
instance. It is a wrapper around
Biobase
's readExpressionSet
function with an
additional featureDataFile
parameter to include feature data.
See also readExpressionSet
for more details.
readMSnSet2
is a simple version that takes a single text
spreadsheet as input and extracts the expression data and feature
meta-data to create and MSnSet
.
Note that when using readMSnSet2
, one should not set
rownames
as additional argument to defined feature names. It is
ignored and used to set fnames
if not provided otherwise.
Usage
readMSnSet(exprsFile,
phenoDataFile,
featureDataFile,
experimentDataFile,
notesFile,
path, annotation,
exprsArgs = list(sep = sep, header = header, row.names = row.names, quote = quote, ...),
phenoDataArgs = list(sep = sep, header = header, row.names = row.names, quote = quote, stringsAsFactors = stringsAsFactors, ...),
featureDataArgs = list(sep = sep, header = header, row.names = row.names, quote = quote, stringsAsFactors = stringsAsFactors, ...),
experimentDataArgs = list(sep = sep, header = header, row.names = row.names, quote = quote, stringsAsFactors = stringsAsFactors, ...),
sep = "\t",
header = TRUE,
quote = "",
stringsAsFactors = FALSE,
row.names = 1L,
widget = getOption("BioC")$Base$use.widgets, ...)
readMSnSet2(file, ecol, fnames, ...)
Arguments
Arguments direclty passed to readExpressionSet
. The description
is from the readExpressionSet
documentation page.
- exprsFile
(character) File or connection from which to read expression values. The file should contain a matrix with rows as features and columns as samples.
read.table
is called with this as itsfile
argument and further arguments given byexprsArgs
.- phenoDataFile
(character) File or connection from which to read phenotypic data.
read.AnnotatedDataFrame
is called with this as itsfile
argument and further arguments given byphenoDataArgs
.- experimentDataFile
(character) File or connection from which to read experiment data.
read.MIAME
is called with this as itsfile
argument and further arguments given byexperimentDataArgs
.- notesFile
(character) File or connection from which to read notes;
readLines
is used to input the file.- path
(optional) directory in which to find all the above files.
- annotation
(character) A single character string indicating the annotation associated with this ExpressionSet.
- exprsArgs
A list of arguments to be used with
read.table
when reading in the expression matrix.- phenoDataArgs
A list of arguments to be used (with
read.AnnotatedDataFrame
) when reading the phenotypic data.- experimentDataArgs
A list of arguments to be used (with
read.MIAME
) when reading the experiment data.- sep, header, quote, stringsAsFactors, row.names
arguments used by the
read.table
-like functions.- widget
A boolean value indicating whether widgets can be used. Widgets are NOT yet implemented for
read.AnnotatedDataFrame
.- ...
Further arguments that can be passed on to the
read.table
-like functions.
Additional argument, specific to readMSnSet
:
- featureDataFile
(character) File or connection from which to read feature data.
read.AnnotatedDataFrame
is called with this as itsfile
argument and further arguments given byphenoDataArgs
.- featureDataArgs
A list of arguments to be used (with
read.AnnotatedDataFrame
) when reading the phenotypic data.
Arguments for readMSnSet2
:
- file
A
character
indicating the spreadsheet file or adata.frame
(new in version 1.19.8). Default, whenfile
is acharacter
, is to read the file as a comma-separated values (csv). If different, use the additional arguments, passed toread.csv
, to parametrise file import.Passing a
data.frame
can be particularly useful if the spreadsheet is in Excel format. The appropriate sheet can first be read into R as adata.frame
using, for examplereadxl::read_excel
, and then pass it toreadMSnSet2
.- ecol
A
numeric
indicating the indices of the columns to be used as expression values. Can also be acharacter
indicating the names of the columns. Caution must be taken if the column names are composed of special characters like(
or-
that will be converted to a.
. Ifecol
does not match, the error message will dislpay the column names are see byR
.- fnames
An optional
character
ornumeric
of length 1 indicating the column to be used as feature names.
Value
An instance of the MSnSet
class.
Examples
if (FALSE) { # \dontrun{
exprsFile <- "path_to_intensity_file.csv"
fdatafile <- "path_to_featuredata_file.csv"
pdatafile <- "path_to_sampledata_file.csv"
## Read ExpressionSet with appropriate parameters
res <- readMSnSet(exprsFile, pdataFile, fdataFile, sep = "\t", header=TRUE)
} # }
library("pRolocdata")
f0 <- dir(system.file("extdata", package = "pRolocdata"),
full.names = TRUE,
pattern = "Dunkley2006")
basename(f0)
#> [1] "Dunkley2006.csv.gz"
res <- readMSnSet2(f0, ecol = 5:20)
res
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples
#> element names: exprs
#> protocolData: none
#> phenoData: none
#> featureData
#> featureNames: 1 2 ... 689 (689 total)
#> fvarLabels: Protein.ID Loc.Predicted ... pd.markers (6 total)
#> fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#> Annotation:
#> - - - Processing information - - -
#> MSnbase version: 2.31.2
head(exprs(res)) ## columns 5 to 20
#> M1F1A M1F4A M1F7A M1F11A M1F2B M1F5B M1F8B M1F11B
#> 1 0.323250 0.275500 0.216000 0.185250 0.465667 0.199667 0.174333 0.160333
#> 2 0.332000 0.279667 0.222000 0.166000 0.451500 0.200375 0.177250 0.171125
#> 3 0.397250 0.246500 0.168250 0.188250 0.459750 0.214500 0.183250 0.142250
#> 4 0.336733 0.303267 0.201133 0.158800 0.487167 0.201833 0.165333 0.145333
#> 5 0.328800 0.302900 0.192100 0.176400 0.542000 0.180750 0.151250 0.126250
#> 6 0.343714 0.295286 0.195000 0.165714 0.500111 0.207000 0.160333 0.132444
#> M2F1A M2F4A M2F7A M2F11A M2F2B M2F5B M2F8B M2F11B
#> 1 0.370667 0.317444 0.154333 0.157444 0.379500 0.333000 0.161000 0.1270
#> 2 0.371923 0.290923 0.168000 0.169154 0.428800 0.285600 0.153000 0.1328
#> 3 0.390200 0.298400 0.176800 0.134200 0.413500 0.255000 0.172500 0.1590
#> 4 0.387833 0.326833 0.152667 0.133000 0.416333 0.305667 0.147333 0.1310
#> 5 0.356714 0.306857 0.172143 0.164286 0.450333 0.260667 0.158667 0.1300
#> 6 0.344087 0.326739 0.177609 0.151739 0.373750 0.295375 0.176625 0.1540
head(fData(res)) ## other columns
#> Protein.ID Loc.Predicted Loc.Confirmed Loc.Assigned pd.2013 pd.markers
#> 1 At1g09210 predicted ER predicted ER ER ER ER lumen
#> 2 At1g21750 predicted ER predicted ER ER ER ER lumen
#> 3 At1g51760 unknown unknown ER ER ER lumen
#> 4 At1g56340 predicted ER predicted ER ER ER ER lumen
#> 5 At2g32920 predicted ER predicted ER ER ER ER lumen
#> 6 At2g47470 predicted ER predicted ER ER ER ER lumen