Chapter 6 References and session information

The following packages have been used to generate this document.

## R version 4.0.3 Patched (2021-01-13 r79827)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/libf77blas.so.3.10.3
## LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=de_BE.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=de_BE.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=de_BE.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=de_BE.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] patchwork_1.1.1              factoextra_1.0.7            
##  [3] gplots_3.1.1                 limma_3.46.0                
##  [5] forcats_0.5.1                stringr_1.4.0               
##  [7] purrr_0.3.4                  readr_1.4.0                 
##  [9] tidyr_1.1.3                  tibble_3.1.0                
## [11] tidyverse_1.3.0              QFeatures_1.1.2             
## [13] MultiAssayExperiment_1.17.18 SummarizedExperiment_1.20.0 
## [15] Biobase_2.50.0               GenomicRanges_1.42.0        
## [17] GenomeInfoDb_1.26.4          IRanges_2.24.1              
## [19] MatrixGenerics_1.2.1         matrixStats_0.58.0          
## [21] MSnID_1.24.0                 mzID_1.28.0                 
## [23] ggplot2_3.3.3                dplyr_1.0.5                 
## [25] magrittr_2.0.1               Spectra_1.1.9               
## [27] ProtGenerics_1.23.6          BiocParallel_1.24.1         
## [29] S4Vectors_0.28.1             BiocGenerics_0.36.0         
## [31] msdata_0.30.0                rpx_1.99.3                  
## [33] mzR_2.24.1                   Rcpp_1.0.6                  
## [35] BiocStyle_2.18.1            
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.1.4              R.utils_2.10.1          gmm_1.6-6              
##   [4] tidyselect_1.1.0        RSQLite_2.2.4           AnnotationDbi_1.52.0   
##   [7] grid_4.0.3              norm_1.0-9.5            munsell_0.5.0          
##  [10] codetools_0.2-18        preprocessCore_1.52.1   withr_2.4.1            
##  [13] colorspace_2.0-0        highr_0.8               knitr_1.31             
##  [16] rstudioapi_0.13         ggsignif_0.6.1          labeling_0.4.2         
##  [19] GenomeInfoDbData_1.2.4  bit64_4.0.5             farver_2.1.0           
##  [22] pheatmap_1.0.12         rhdf5_2.34.0            vctrs_0.3.6            
##  [25] generics_0.1.0          xfun_0.22               BiocFileCache_1.14.0   
##  [28] R6_2.5.0                doParallel_1.0.16       MsCoreUtils_1.3.2      
##  [31] AnnotationFilter_1.14.0 bitops_1.0-6            rhdf5filters_1.2.0     
##  [34] cachem_1.0.4            DelayedArray_0.16.2     assertthat_0.2.1       
##  [37] promises_1.2.0.1        scales_1.1.1            gtable_0.3.0           
##  [40] affy_1.68.0             sandwich_3.0-0          rlang_0.4.10           
##  [43] rstatix_0.7.0           lazyeval_0.2.2          impute_1.64.0          
##  [46] broom_0.7.5             abind_1.4-5             BiocManager_1.30.10    
##  [49] yaml_2.2.1              reshape2_1.4.4          modelr_0.1.8           
##  [52] backports_1.2.1         httpuv_1.5.5            tools_4.0.3            
##  [55] bookdown_0.21           affyio_1.60.0           ellipsis_0.3.1         
##  [58] jquerylib_0.1.3         RColorBrewer_1.1-2      MSnbase_2.17.1         
##  [61] plyr_1.8.6              zlibbioc_1.36.0         RCurl_1.98-1.2         
##  [64] ps_1.6.0                ggpubr_0.4.0            zoo_1.8-9              
##  [67] haven_2.3.1             ggrepel_0.9.1           fs_1.5.0               
##  [70] data.table_1.14.0       openxlsx_4.2.3          reprex_1.0.0           
##  [73] pcaMethods_1.82.0       mvtnorm_1.1-1           msmbstyle_0.0.11       
##  [76] R.cache_0.14.0          hms_1.0.0               mime_0.10              
##  [79] evaluate_0.14           xtable_1.8-4            XML_3.99-0.5           
##  [82] rio_0.5.26              readxl_1.3.1            compiler_4.0.3         
##  [85] KernSmooth_2.23-18      ncdf4_1.17              crayon_1.4.1           
##  [88] R.oo_1.24.0             htmltools_0.5.1.1       later_1.1.0.1          
##  [91] lubridate_1.7.10        DBI_1.1.1               dbplyr_2.1.0           
##  [94] MASS_7.3-53             tmvtnorm_1.4-10         rappdirs_0.3.3         
##  [97] Matrix_1.3-2            car_3.0-10              cli_2.3.1              
## [100] vsn_3.58.0             
##  [ reached getOption("max.print") -- omitted 39 entries ]

References

Christoforou, Andy, Claire M Mulvey, Lisa M Breckels, Aikaterini Geladaki, Tracey Hurrell, Penelope C Hayward, Thomas Naake, et al. 2016. “A Draft Map of the Mouse Pluripotent Stem Cell Spatial Proteome.” Nat Commun 7: 8992. https://doi.org/10.1038/ncomms9992.

Cox, J, and M Mann. 2008. “MaxQuant Enables High Peptide Identification Rates, Individualized P.p.b.-range Mass Accuracies and Proteome-Wide Protein Quantification.” Nat Biotechnol 26 (12): 1367–72. https://doi.org/10.1038/nbt.1511.

Gatto, Laurent, Sebastian Gibb, and Johannes Rainer. 2020. “MSnbase, Efficient and Elegant R-Based Processing and Visualisation of Raw Mass Spectrometry Data.” J. Proteome Res., September.

Lazar, C, L Gatto, M Ferro, C Bruley, and T Burger. 2016. “Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies.” J Proteome Res 15 (4): 1116–25. https://doi.org/10.1021/acs.jproteome.5b00981.

Morgan, Martin, Valerie Obenchain, Jim Hester, and Hervé Pagès. 2020. SummarizedExperiment: SummarizedExperiment Container. https://bioconductor.org/packages/SummarizedExperiment.

Paulovich, Amanda G, Dean Billheimer, Amy-Joan L Ham, Lorenzo Vega-Montoto, Paul A Rudnick, David L Tabb, Pei Wang, et al. 2010. “Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance.” Mol. Cell. Proteomics 9 (2): 242–54.

Ramos, Marcel, Lucas Schiffer, Angela Re, Rimsha Azhar, Azfar Basunia, Carmen Rodriguez Cabrera, Tiffany Chan, et al. 2017. “Software for the Integration of Multi-Omics Experiments in Bioconductor.” Cancer Research 77(21); e39-42.

Sticker, Adriaan, Ludger Goeminne, Lennart Martens, and Lieven Clement. 2019. “Robust Summarization and Inference in Proteome-Wide Label-Free Quantification.” bioRxiv. https://doi.org/10.1101/668863.

Page built: 2021-03-17