Skip to contents

There is a need for adequate handling of missing value impuation in quantitative proteomics. Before developing a framework to handle missing data imputation optimally, we propose a set of visualisation tools. This document serves as an internal notebook for current progress and ideas that will eventually materialise in exported functionality in the MSnbase package.

Details

The explore the structure of missing values, we propose to

1. Explore missing values in the frame of the experimental design. The imageNA2 function offers such a simple visualisation. It is currently limited to 2-group designs/comparisons. In case of time course experiments or sub-cellular fractionation along a density gradient, we propose to split the time/gradient into 2 groups (early/late, top/bottom) as a first approximation.

2. Explore the proportion of missing values in each group.

3. Explore the total and group-wise feature intensity distributions.

The existing plotNA function illustrates the completeness/missingness of the data.

See also

Author

Laurent Gatto Samuel Wieczorek and Thomas Burger

Examples

## Other suggestions
library("pRolocdata")
library("pRoloc")
data(dunkley2006)
set.seed(1)
nax <- makeNaData(dunkley2006, pNA = 0.10)
pcol <- factor(ifelse(dunkley2006$fraction <= 5, "A", "B"))
sel1 <- pcol == "A"

## missing values in each sample
barplot(colSums(is.na(nax)), col = pcol)



## table of missing values in proteins
par(mfrow = c(3, 1))
barplot(table(rowSums(is.na(nax))), main = "All")
barplot(table(rowSums(is.na(nax)[sel1,])), main = "Group A")
barplot(table(rowSums(is.na(nax)[!sel1,])), main = "Group B")



fData(nax)$nNA1 <- rowSums(is.na(nax)[, sel1])
fData(nax)$nNA2 <- rowSums(is.na(nax)[, !sel1])
fData(nax)$nNA <- rowSums(is.na(nax))
o <- MSnbase:::imageNA2(nax, pcol)

plot((fData(nax)$nNA1 - fData(nax)$nNA2)[o], type = "l")
grid()

plot(sort(fData(nax)$nNA1 - fData(nax)$nNA2), type = "l")
grid()



o2 <- order(fData(nax)$nNA1 - fData(nax)$nNA2)
MSnbase:::imageNA2(nax, pcol, Rowv=o2)

layout(matrix(c(rep(1, 10), rep(2, 5)), nc = 3))

MSnbase:::imageNA2(nax, pcol, Rowv=o2)
plot((fData(nax)$nNA1 - fData(nax)$nNA)[o2], type = "l", col = "red",
     ylim = c(-9, 9), ylab = "")
lines((fData(nax)$nNA - fData(nax)$nNA2)[o2], col = "steelblue")
lines((fData(nax)$nNA1 - fData(nax)$nNA2)[o2], type = "l",
     lwd = 2)