Chapter 8 Interactive visualisation

8.1 Interactive apps with plotly

The plotly package can be used for creating interactive web graphics via the open source JavaScript graphing library plotly.js.

library("plotly")
p <- ggplot(data = crcdf,
            aes(x = A1AG2, y = AFM, colour = Group)) +
    geom_point()
ggplotly(p)
crcdf <- crcdf[c(1:10, 191:200), c(70:74)]
x <- gather(crcdf,
            key = Protein, value = x,
            -Sample,
            -Group)
p <- ggplot(data = x,
            aes(x = Sample, y = x,
                group = Protein,
                colour = Protein)) +
        geom_line()


ggplotly(p)

Two examples using MS data

library("MSnbase")
data(itraqdata)
ms2 <- plot(itraqdata[[1]], full = TRUE)

ggplotly(ms2) ## zoom in on iTRAQ4 reporter ions
library("msdata")
f <- proteomics(full.names = TRUE, pattern = "TMT11")
rw <- readMSData(f, mode = "onDisk")
ms1 <- plot(rw[[1]])

ggplotly(ms1) ## zoom in on isotopic envelope

See the plotly for R book for more details.

8.2 Interactive apps

8.2.1 Motivating examples

In this section, we show how to build interactive shiny applications. shiny is widely used to explore and visualise biomolecular data. As motivating examples, we present here two such example for proteomics data.

Longitudinal proteomics QC

MSstatsQC uses control charts to monitor the instrument performance by tracking system suitability metrics including total peak area, retention time and full width at half maximum (FWHM) and peak assymetry. Additional metrics can also be analyzed by including them to the input file.

An online application is available at https://eralpdogu.shinyapps.io/msstatsqc

Spatial proteomics

The pRoloc package offers dedicated functionality to manipulate, annotate, analyse and visualise spatial proteomics data. Its companion package pRolocGUI offers support for interactive visualisation.

You can start an app to visualise one of the published data as shown below

library("pRoloc")
library("pRolocdata")
data(hyperLOPIT2015)
library("pRolocGUI")
pRolocVis(hyperLOPIT2015)

This same data is also available as a standalone on-line application at https://lgatto.shinyapps.io/christoforou2015

Reference:

  • Gatto L, Breckels LM, Wieczorek S, Burger T, Lilley KS. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics. 2014 May 1;30(9):1322-4. doi: 10.1093/bioinformatics/btu013. Epub 2014 Jan 11. PubMed PMID: 24413670; PubMed Central PMCID: PMC3998135.

  • Breckels LM, Mulvey CM, Lilley KS and Gatto L. A Bioconductor workflow for processing and analysing spatial proteomics data [version 2; peer review: 2 approved]. F1000Research 2018, 5:2926 (https://doi.org/10.12688/f1000research.10411.2)

8.2.2 Introduction

A useful shiny cheet sheet is available here.

This section is based on RStudio shiny tutorials.

From the shiny package website:

Shiny is an R package that makes it easy to build interactive web apps straight from R.

When using shiny, one tends to aim for more complete, long-lasting applications, rather than transient visualisations.

A shiny application is composed of a ui (user interface) and a server that exchange information using a programming paradigm called reactive programming: changes performed by the user to the ui trigger a reaction by the server and the output is updated accordingly.

  • In the ui: define the components of the user interface (such as page layout, page title, input options and outputs), i.e what the user will see and interact with.

  • In the server: defines the computations in the R backend.

  • The reactive programming is implemented through reactive functions, which are functions that are only called when their respective inputs are changed.

  • An application is run with the shiny::runApp() function, that takes the directory containing the ui and server as input.

Let’s build a simple example from scratch, step by step. This app, shown below, uses the faithful data, describing the wainting time between eruptions and the duration of the reuption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

head(faithful)
##   eruptions waiting
## 1     3.600      79
## 2     1.800      54
## 3     3.333      74
## 4     2.283      62
## 5     4.533      85
## 6     2.883      55

It shows the distribution of waiting times along a histogram (produced by the hist function) and provides a slider to adjust the number of bins (the breaks argument to hist).

The app can also be opened at https://lgatto.shinyapps.io/shiny-app1/

8.2.3 Creation of our fist shiny app

  1. Create a directory that will contain the app, such as for example "shinyapp".
  2. In this directory, create the ui and server files, named ui.R and server.R.
  3. In the ui.R file, let’s defines a (fluid) page containing
  • a title panel with a page title;
  • a layout containing a sidebar and a main panel
library(shiny)

shinyUI(fluidPage(
    titlePanel("My Shiny App"),
    sidebarLayout(
        sidebarPanel(
        ),
        mainPanel(
        )
    )
))
  1. In the server.R file, we define the shinyServer function that handles input and ouputs (none at this stage) and the R logic.
library(shiny)

shinyServer(function(input, output) {
})
  1. Let’s now add some items to the ui: a text input widget in the sidebar and a field to hold the text ouput.
library(shiny)

shinyUI(fluidPage(
    titlePanel("My Shiny App"),
    sidebarLayout(
        sidebarPanel(
            textInput("textInput", "Enter text here:")
        ),
        mainPanel(
            textOutput("textOutput")
        )
    )
))
  1. In the server.R file, we add in the shinyServer function some R code defining how to manipulate the user-provided text and render it using a shiny textOuput.
library(shiny)

shinyServer(function(input, output) {
    output$textOutput <- renderText(paste("User-entered text: ",
                                          input$textInput))
})
  1. Let’s now add a plot in the main panel in ui.R and some code to draw a histogram in server.R:
library(shiny)

shinyUI(fluidPage(
    titlePanel("My Shiny App"),
    sidebarLayout(
        sidebarPanel(
            textInput("textInput", "Enter text here:")
        ),
        mainPanel(
            textOutput("textOutput"),
            plotOutput("distPlot")            
        )
    )
))
library(shiny)

shinyServer(function(input, output) {
    output$textOutput <- renderText(paste("User-entered text: ",
                                          input$textInput))
    output$distPlot <- renderPlot({
        x    <- faithful[, 2]
        hist(x)
    })
    
})
  1. We want to be able to control the number of breaks used to plot the histograms. We first add a sliderInput to the ui for the user to specify the number of bins, and then make use of that new input to parametrise the histogram.
library(shiny)

shinyUI(fluidPage(
    titlePanel("My Shiny App"),
    sidebarLayout(
        sidebarPanel(
            textInput("textInput", "Enter text here:"),
            sliderInput("bins",
                        "Number of bins:",
                        min = 1,
                        max = 50,
                        value = 30)            
        ),
        mainPanel(
            textOutput("textOutput"),
            plotOutput("distPlot")            
        )
    )
))
library(shiny)

shinyServer(function(input, output) {
    output$textOutput <- renderText(paste("User-entered text: ",
                                          input$textInput))
    output$distPlot <- renderPlot({
        x    <- faithful[, 2]
        bins <- seq(min(x), max(x), length.out = input$bins + 1)    
        hist(x, breaks = bins)
    })
    
})
  1. The next addition is to add a menu for the user to choose a set of predefined colours (that would be a selectInput) in the ui.R file and use that new input to parametrise the colour of the histogramme in the server.R file.
library(shiny)

shinyUI(fluidPage(
    titlePanel("My Shiny App"),
    sidebarLayout(
        sidebarPanel(
            textInput("textInput", "Enter text here:"),
            sliderInput("bins",
                        "Number of bins:",
                        min = 1,
                        max = 50,
                        value = 30),
            selectInput("col", "Select a colour:",
                        choices = c("steelblue", "darkgray", "orange"))            
        ),
        mainPanel(
            textOutput("textOutput"),
            plotOutput("distPlot")
        )
    )
))
library(shiny)

shinyServer(function(input, output) {
    output$textOutput <- renderText(paste("User-entered text: ",
                                          input$textInput))
    output$distPlot <- renderPlot({
        x    <- faithful[, 2]
        bins <- seq(min(x), max(x), length.out = input$bins + 1)
        hist(x, breaks = bins, col = input$col)
    })
    
})
  1. The last addition that we want is to visualise the actual data in the main panel. We add a dataTableOutput in ui.R and generate that table in server.R using a renderDataTable rendering function.
library(shiny)
## Define UI for application that draws a histogram
shinyUI(fluidPage(
    ## Application title
    titlePanel("My Shiny App"),
    ## Sidebar with text, slide bar and menu selection inputs
    sidebarLayout(
        sidebarPanel(
            textInput("textInput", "Enter text here:"),
            sliderInput("bins",
                        "Number of bins:",
                        min = 1,
                        max = 50,
                        value = 30),
            selectInput("col", "Select a colour:",
                        choices = c("steelblue", "darkgray", "orange"))
        ),
        ## Main panel showing user-entered text, a reactive plot and a
        ## dynamic table
        mainPanel(
            textOutput("textOutput"),
            plotOutput("distPlot"),
            dataTableOutput("dataTable")
        )
    )
))
library(shiny)
## Define server logic 
shinyServer(function(input, output) {
    output$textOutput <- renderText(paste("User-entered text: ",
                                          input$textInput))
    ## Expression that generates a histogram. The expression is
    ## wrapped in a call to renderPlot to indicate that:
    ##
    ##  1) It is "reactive" and therefore should be automatically
    ##     re-executed when inputs change
    ##  2) Its output type is a plot
    output$distPlot <- renderPlot({
        x    <- faithful[, 2]  ## Old Faithful Geyser data
        bins <- seq(min(x), max(x), length.out = input$bins + 1)
        ## draw the histogram with the specified number of bins
        hist(x, breaks = bins, col = input$col, border = 'white')
    })
    output$dataTable <- renderDataTable(faithful)
})

Challenge

Write and your shinyapp applications, as described above.

Single-file app

Instead of defining the ui and server in their respective files, they can be combined into list

ui <- fluidPage(...)
server <- function(input, output) { ... }

To be run as

shinyApp(ui = ui, server = server)

Challenges

  1. Create an app to visualise the mulvey2015norm data where the user can select along which features to view the data.

  2. As above, where the visualisation is a PCA plot and the user chooses the PCs.

Sharing shiny apps

  • Share the code file(s) and runApp
  • runUrl
  • runGitHub (to run this app, you could execute runGitHub("VisualisingBiomolecularData", "lgatto", subdir = "/src/shiny-app1"))
  • runGist
  • shinyapps (for example https://lgatto.shinyapps.io/christoforou2015/)
  • Shiny server (in-house)

More interactivity

 plotOutput("pca",
            hover = "hover",
            click = "click",
            dblclick = "dblClick",
            brush = brushOpts(
                id = "brush",
                resetOnNew = TRUE))

Example here.