Authors and Citation
Authors
-
Laurent Gatto. Author.
-
Lisa Breckels. Maintainer, author.
-
Thomas Burger. Contributor.
-
Samuel Wieczorek. Contributor.
-
Charlotte Hutchings. Contributor.
-
Oliver Crook. Author.
Citation
Source: inst/CITATION
Gatto L, Breckels LM, Wieczorek S, Burger T, Lilley KS. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics. 2014 May 1;30(9):1322-4. doi:10.1093/bioinformatics/btu013. Epub 2014 Jan 11. PubMed PMID: 24413670; PubMed Central PMCID: PMC3998135.
@Article{, title = {Mass-spectrometry based spatial proteomics data analysis using pRoloc and pRolocdata}, author = {Laurent Gatto and Lisa M. Breckels and Samuel Wieczorek and Thomas Burger and Kathryn S. Lilley}, journal = {Bioinformatics}, year = {2014}, }
Breckels LM, Gatto L, Christoforou A, Groen AJ, Lilley KS, Trotter MW. The effect of organelle discovery upon sub-cellular protein localisation. J Proteomics. 2013 Mar 21. doi:pii: S1874-3919(13)00094-8. 10.1016/j.jprot.2013.02.019. PubMed PMID: 23523639.
@Article{, title = {The effect of organelle discovery upon sub-cellular protein localisation}, author = {Lisa M. Breckels and Laurent Gatto and Andy Christoforou and Arnoud J. Groen and Kathryn S. Lilley and Matthew W. Trotter}, journal = {J Proteomics}, year = {2013}, }
Gatto L., Breckels L.M., Burger T, Nightingale D.J.H., Groen A.J., Campbell C., Mulvey C.M., Christoforou A., Ferro M., Lilley K.S. 'A foundation for reliable spatial proteomics data analysis' Mol Cell Proteomics. 2014 May 20.
@Article{, title = {A foundation for reliable spatial proteomics data analysis}, author = {Laurent Gatto and Lisa M. Breckels and Thomas Burger and Daniel J. Nightingale and Arnoud J. Groen and Callum Campbell and Claire M. Mulvey and Andy Christroforou and Myriam Ferro and Kathryn S. Lilley}, journal = {Mol Cell Proteomics}, year = {2014}, }
Breckels LM, Holden SB, Wojnar D, Mulvey CM, Christoforou A, Groen A, Trotter MW Kohlbacher O, Lilley KS, Gatto L. Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics. PLoS Comput Biol. 2016 May 13;12(5):e1004920. doi: 10.1371/journal.pcbi.1004920.
@Article{, title = {Learning from heterogeneous data sources: an application in spatial proteomics}, author = {Lisa M. Breckels and Sean Holden and David Wonjar and Claire M. Mulvey and Andy Christoforou and Arnoud Groen and Matthew W.B. Trotter and Oliver Kohlbacker and Kathryn S. Lilley and Laurent Gatto}, journal = {PLoS Comput Biol}, year = {2016}, }
Breckels LM, Mulvey CM, Lilley KS and Gatto L. A Bioconductor workflow for processing and analysing spatial proteomics data. [version 2; peer review: 2 approved]. F1000Research 2018, 5:2926 (https://doi.org/10.12688/f1000research.10411.2)
@Article{, title = {A Bioconductor workflow for processing and analysing spatial proteomics data}, author = {Lisa M. Breckels and Claire M. Mulvey and Kathryn S. Lilley and Laurent Gatto}, journal = {F1000Research}, year = {2016}, }
Crook OM, Breckels LM, Lilley KS, Kirk PWD, Gatto L. A Bioconductor workflow for the Bayesian analysis of spatial proteomics [version 1; peer review: awaiting peer review]. F1000Research 2019, 8:446 (https://doi.org/10.12688/f1000research.18636.1)
@Article{, title = {A Bioconductor workflow for the Bayesian analysis of spatial proteomics}, author = {Oliver M. Crook and Lisa M. Breckels and Kathryn S. Lilley and Paul D.W. Kirk and Laurent Gatto}, journal = {F1000Research}, year = {2019}, }