Skip to contents
-
class:AnnotationParams AnnotationParams AnnotationParams-class show,AnnotationParams-method AnnotationParams setAnnotationParams getAnnotationParams dunkley2006params andy2011params
- Class
"AnnotationParams"
-
ClustDist class:ClustDist ClustDist-class plot,ClustDist,MSnSet-method show,ClustDist-method
- Class
"ClustDist"
-
ClustDistList class:ClustDistList ClustDistList-class plot,ClustDistList,missing-method show,ClustDistList-method [,ClustDistList,ANY,ANY,ANY-method [,ClustDistList,ANY,missing,missing-method [[,ClustDistList,ANY,ANY-method [[,ClustDistList,ANY,missing-method length,ClustDistList-method names,ClustDistList-method names<-,ClustDistList,ANY-method lapply,ClustDistList-method sapply,ClustDistList-method
- Storing multiple ClustDist instances
-
GenRegRes ThetaRegRes class:GenRegRes class:ThetaRegRes GenRegRes-class ThetaRegRes-class getF1Scores getF1Scores,GenRegRes-method getF1Scores,ThetaRegRes-method f1Count f1Count,GenRegRes-method f1Count,ThetaRegRes-method getParams getParams,GenRegRes-method getParams,ThetaRegRes-method getRegularisedParams getRegularisedParams,GenRegRes-method getRegularizedParams getRegularizedParams,GenRegRes-method getSeed getSeed,GenRegRes-method getWarnings getWarnings,GenRegRes-method levelPlot levelPlot,GenRegRes-method plot,GenRegRes,missing-method plot,ThetaRegRes,missing-method show,GenRegRes-method show,ThetaRegRes-method combineThetaRegRes favourPrimary
- Class
"GenRegRes" and "ThetaRegRes"
-
chains() show(<MCMCParams>) show(<ComponentParam>) show(<MCMCChain>) length(<MCMCChains>) length(<MCMCParams>) `[[`(<MCMCChains>,<ANY>,<ANY>) `[[`(<MCMCParams>,<ANY>,<ANY>) `[`(<MCMCChains>,<ANY>,<ANY>,<ANY>) `[`(<MCMCParams>,<ANY>,<ANY>,<ANY>) show(<MCMCChains>)
- Instrastructure to store and process MCMC results
-
MLearn,formula,MSnSet,learnerSchema,numeric-method MLearn,formula,MSnSet,learnerSchema,xvalSpec-method MLearn,formula,MSnSet,clusteringSchema,missing-method MSnSetMLean MLearnMSnSet
- The
MLearn interface for machine learning
-
MartInstance-class MartInstance show,MartInstance-method MartInstanceList-class MartInstanceList as.data.frame.MartInstanceList as.data.frame.MartInstance [,MartInstanceList-method [,MartInstanceList,ANY,ANY-method [,MartInstanceList,ANY,ANY,ANY-method [[,MartInstanceList-method [[,MartInstanceList,ANY,ANY-method sapply,MartInstanceList-method sapply,MartInstanceList,ANY-method lapply,MartInstanceList-method lapply,MartInstanceList,ANY-method nDatasets filterAttrs getMartInstanceList getMartTab getFilterList
- Class
"MartInstance"
-
QSep-class class::QSep QSep show,QSep-method summary,QSep-method names,QSep-method names<-,QSep,character-method plot,QSep-method plot,QSep,missing-method levelPlot,QSep-method qsep
- Quantify resolution of a spatial proteomics experiment
-
SpatProtVis()
- Class
SpatProtVis
-
addGoAnnotations()
- Add GO annotations
-
addLegend()
- Adds a legend
-
addMarkers()
- Adds markers to the data
-
checkFeatureNamesOverlap()
- Check feature names overlap
-
checkFvarOverlap()
- Compare a feature variable overlap
-
chi2 chi2-methods chi2,matrix,matrix-method chi2,matrix,numeric-method chi2,numeric,matrix-method chi2,numeric,numeric-method
- The PCP 'chi square' method
-
classWeights()
- Calculate class weights
-
clustDist()
- Pairwise Distance Computation for Protein Information Sets
-
empPvalues()
- Estimate empirical p-values for \(Chi^2\) protein correlations.
-
fDataToUnknown()
- Update a feature variable
-
filterBinMSnSet()
- Filter a binary MSnSet
-
filterMaxMarkers()
- Removes class/annotation information from a matrix of candidate markers that appear in the
fData.
-
filterMinMarkers()
- Removes class/annotation information from a matrix of candidate markers that appear in the
fData.
-
filterZeroCols() filterZeroRows()
- Remove 0 columns/rows
-
getGOFromFeatures()
- Retrieve GO terms for feature names
-
getMarkerClasses()
- Returns the organelle classes in an 'MSnSet'
-
getMarkers()
- Get the organelle markers in an
MSnSet
-
getNormDist()
- Extract Distances from a
"ClustDistList" object
-
getPredictions()
- Returns the predictions in an 'MSnSet'
-
setLisacol() getLisacol() getOldcol() setOldcol() getStockcol() setStockcol() getStockpch() setStockpch() getUnknowncol() setUnknowncol() getUnknownpch() setUnknownpch()
- Manage default colours and point characters
-
goIdToTerm() goTermToId() flipGoTermId() prettyGoTermId()
- Convert GO ids to/from terms
-
highlightOnPlot() highlightOnPlot3D()
- Highlight features of interest on a spatial proteomics plot
-
knnClassification()
- knn classification
-
knnOptimisation()
- knn parameter optimisation
-
knntlClassification()
- knn transfer learning classification
-
knntlOptimisation()
- theta parameter optimisation
-
ksvmClassification()
- ksvm classification
-
ksvmOptimisation()
- ksvm parameter optimisation
-
makeGoSet()
- Creates a GO feature
MSnSet
-
markerMSnSet() unknownMSnSet()
- Extract marker/unknown subsets
-
mrkVecToMat() mrkMatToVec() mrkMatAndVec() showMrkMat() isMrkMat() isMrkVec() mrkEncoding()
- Create a marker vector or matrix.
-
mcmc_get_outliers() mcmc_get_meanComponent() mcmc_get_meanoutliersProb() geweke_test() mcmc_pool_chains() mcmc_burn_chains() mcmc_thin_chains() plot(<MCMCParams>,<character>)
- Number of outlier at each iteration of MCMC
-
minMarkers()
- Creates a reduced marker variable
-
mixing_posterior_check()
- Model calibration plots
-
move2Ds()
- Displays a spatial proteomics animation
-
mrkConsProfiles()
- Marker consensus profiles
-
mrkHClust()
- Draw a dendrogram of subcellular clusters
-
nbClassification()
- nb classification
-
nbOptimisation()
- nb paramter optimisation
-
nicheMeans2D()
- Uncertainty plot organelle means
-
nndist-methods nndist,matrix,matrix-method nndist,matrix,missing-method nndist,MSnSet,missing-method nndist
- Nearest neighbour distances
-
nnetClassification()
- nnet classification
-
nnetOptimisation()
- nnet parameter optimisation
-
orderGoAnnotations()
- Orders annotation information
-
orgQuants()
- Returns organelle-specific quantile scores
-
pRolocmarkers()
- Organelle markers
-
perTurboClassification()
- perTurbo classification
-
perTurboOptimisation()
- PerTurbo parameter optimisation
-
phenoDisco()
- Runs the
phenoDisco algorithm.
-
plot2D() plot3D(<MSnSet>)
- Plot organelle assignment data and results.
-
plot2Ds()
- Draw 2 data sets on one PCA plot
-
plotConsProfiles()
- Plot marker consenses profiles.
-
plotDist()
- Plots the distribution of features across fractions
-
plotEllipse()
- A function to plot probabiltiy ellipses on marker PCA plots to visualise and assess TAGM models.
-
plsdaClassification()
- plsda classification
-
plsdaOptimisation()
- plsda parameter optimisation
-
rfClassification()
- rf classification
-
rfOptimisation()
- svm parameter optimisation
-
sampleMSnSet()
- Extract a stratified sample of an
MSnSet
-
showGOEvidenceCodes() getGOEvidenceCodes()
- GO Evidence Codes
-
spatial2D()
- Uncertainty plot in localisation probabilities
-
subsetMarkers()
- Subsets markers
-
svmClassification()
- svm classification
-
svmOptimisation()
- svm parameter optimisation
-
show(<MAPParams>) logPosteriors() tagmMapTrain() tagmMapPredict()
- The `logPosteriors` function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence.
-
tagmMcmcTrain() tagmMcmcPredict() tagmPredict() tagmMcmcProcess()
- Localisation of proteins using the TAGM MCMC method
-
testMSnSet()
- Create a stratified 'test'
MSnSet
-
testMarkers()
- Tests marker class sizes
-
thetas()
- Draw matrix of thetas to test
-
undocumented getParams,ClustRegRes-method levelPlot,ClustRegRes-method plot,ClustRegRes,missing-method show,ClustRegRes-method
- Undocumented/unexported entries
-
zerosInBinMSnSet()
- Compute the number of non-zero values in each marker classes