Skip to contents
    
  
    
      - 
          class:AnnotationParamsAnnotationParamsAnnotationParams-classshow,AnnotationParams-methodAnnotationParamssetAnnotationParamsgetAnnotationParamsdunkley2006paramsandy2011params
- Class "AnnotationParams"
- 
          ClustDistclass:ClustDistClustDist-classplot,ClustDist,MSnSet-methodshow,ClustDist-method
- Class "ClustDist"
- 
          ClustDistListclass:ClustDistListClustDistList-classplot,ClustDistList,missing-methodshow,ClustDistList-method[,ClustDistList,ANY,ANY,ANY-method[,ClustDistList,ANY,missing,missing-method[[,ClustDistList,ANY,ANY-method[[,ClustDistList,ANY,missing-methodlength,ClustDistList-methodnames,ClustDistList-methodnames<-,ClustDistList,ANY-methodlapply,ClustDistList-methodsapply,ClustDistList-method
- Storing multiple ClustDist instances
- 
          GenRegResThetaRegResclass:GenRegResclass:ThetaRegResGenRegRes-classThetaRegRes-classgetF1ScoresgetF1Scores,GenRegRes-methodgetF1Scores,ThetaRegRes-methodf1Countf1Count,GenRegRes-methodf1Count,ThetaRegRes-methodgetParamsgetParams,GenRegRes-methodgetParams,ThetaRegRes-methodgetRegularisedParamsgetRegularisedParams,GenRegRes-methodgetRegularizedParamsgetRegularizedParams,GenRegRes-methodgetSeedgetSeed,GenRegRes-methodgetWarningsgetWarnings,GenRegRes-methodlevelPlotlevelPlot,GenRegRes-methodplot,GenRegRes,missing-methodplot,ThetaRegRes,missing-methodshow,GenRegRes-methodshow,ThetaRegRes-methodcombineThetaRegResfavourPrimary
- Class "GenRegRes"and"ThetaRegRes"
- 
          chains()show(<MCMCParams>)show(<ComponentParam>)show(<MCMCChain>)length(<MCMCChains>)length(<MCMCParams>)`[[`(<MCMCChains>,<ANY>,<ANY>)`[[`(<MCMCParams>,<ANY>,<ANY>)`[`(<MCMCChains>,<ANY>,<ANY>,<ANY>)`[`(<MCMCParams>,<ANY>,<ANY>,<ANY>)show(<MCMCChains>)
- Instrastructure to store and process MCMC results
- 
          MLearn,formula,MSnSet,learnerSchema,numeric-methodMLearn,formula,MSnSet,learnerSchema,xvalSpec-methodMLearn,formula,MSnSet,clusteringSchema,missing-methodMSnSetMLeanMLearnMSnSet
- The MLearninterface for machine learning
- 
          MartInstance-classMartInstanceshow,MartInstance-methodMartInstanceList-classMartInstanceListas.data.frame.MartInstanceListas.data.frame.MartInstance[,MartInstanceList-method[,MartInstanceList,ANY,ANY-method[,MartInstanceList,ANY,ANY,ANY-method[[,MartInstanceList-method[[,MartInstanceList,ANY,ANY-methodsapply,MartInstanceList-methodsapply,MartInstanceList,ANY-methodlapply,MartInstanceList-methodlapply,MartInstanceList,ANY-methodnDatasetsfilterAttrsgetMartInstanceListgetMartTabgetFilterList
- Class "MartInstance"
- 
          QSep-classclass::QSepQSepshow,QSep-methodsummary,QSep-methodnames,QSep-methodnames<-,QSep,character-methodplot,QSep-methodplot,QSep,missing-methodlevelPlot,QSep-methodqsep
- Quantify resolution of a spatial proteomics experiment
- 
          SpatProtVis()
- Class SpatProtVis
- 
          addGoAnnotations()
- Add GO annotations
- 
          addLegend()
- Adds a legend
- 
          addMarkers()
- Adds markers to the data
- 
          checkFeatureNamesOverlap()
- Check feature names overlap
- 
          checkFvarOverlap()
- Compare a feature variable overlap
- 
          chi2chi2-methodschi2,matrix,matrix-methodchi2,matrix,numeric-methodchi2,numeric,matrix-methodchi2,numeric,numeric-method
- The PCP 'chi square' method
- 
          classWeights()
- Calculate class weights
- 
          clustDist()
- Pairwise Distance Computation for Protein Information Sets
- 
          empPvalues()
- Estimate empirical p-values for \(Chi^2\) protein correlations.
- 
          fDataToUnknown()
- Update a feature variable
- 
          filterBinMSnSet()
- Filter a binary MSnSet
- 
          filterMaxMarkers()
- Removes class/annotation information from a matrix of candidate markers that appear in the fData.
- 
          filterMinMarkers()
- Removes class/annotation information from a matrix of candidate markers that appear in the fData.
- 
          filterZeroCols()filterZeroRows()
- Remove 0 columns/rows
- 
          getGOFromFeatures()
- Retrieve GO terms for feature names
- 
          getMarkerClasses()
- Returns the organelle classes in an 'MSnSet'
- 
          getMarkers()
- Get the organelle markers in an MSnSet
- 
          getNormDist()
- Extract Distances from a "ClustDistList"object
- 
          getPredictions()
- Returns the predictions in an 'MSnSet'
- 
          setLisacol()getLisacol()getOldcol()setOldcol()getStockcol()setStockcol()getStockpch()setStockpch()getUnknowncol()setUnknowncol()getUnknownpch()setUnknownpch()
- Manage default colours and point characters
- 
          goIdToTerm()goTermToId()flipGoTermId()prettyGoTermId()
- Convert GO ids to/from terms
- 
          highlightOnPlot()highlightOnPlot3D()
- Highlight features of interest on a spatial proteomics plot
- 
          knnClassification()
- knn classification
- 
          knnOptimisation()
- knn parameter optimisation
- 
          knntlClassification()
- knn transfer learning classification
- 
          knntlOptimisation()
- theta parameter optimisation
- 
          ksvmClassification()
- ksvm classification
- 
          ksvmOptimisation()
- ksvm parameter optimisation
- 
          makeGoSet()
- Creates a GO feature MSnSet
- 
          markerMSnSet()unknownMSnSet()
- Extract marker/unknown subsets
- 
          mrkVecToMat()mrkMatToVec()mrkMatAndVec()showMrkMat()isMrkMat()isMrkVec()mrkEncoding()
- Create a marker vector or matrix.
- 
          mcmc_get_outliers()mcmc_get_meanComponent()mcmc_get_meanoutliersProb()geweke_test()mcmc_pool_chains()mcmc_burn_chains()mcmc_thin_chains()plot(<MCMCParams>,<character>)
- Number of outlier at each iteration of MCMC
- 
          minMarkers()
- Creates a reduced marker variable
- 
          mixing_posterior_check()
- Model calibration plots
- 
          move2Ds()
- Displays a spatial proteomics animation
- 
          mrkConsProfiles()
- Marker consensus profiles
- 
          mrkHClust()
- Draw a dendrogram of subcellular clusters
- 
          nbClassification()
- nb classification
- 
          nbOptimisation()
- nb paramter optimisation
- 
          nicheMeans2D()
- Uncertainty plot organelle means
- 
          nndist-methodsnndist,matrix,matrix-methodnndist,matrix,missing-methodnndist,MSnSet,missing-methodnndist
- Nearest neighbour distances
- 
          nnetClassification()
- nnet classification
- 
          nnetOptimisation()
- nnet parameter optimisation
- 
          orderGoAnnotations()
- Orders annotation information
- 
          orgQuants()
- Returns organelle-specific quantile scores
- 
          pRolocmarkers()
- Organelle markers
- 
          perTurboClassification()
- perTurbo classification
- 
          perTurboOptimisation()
- PerTurbo parameter optimisation
- 
          phenoDisco()
- Runs the phenoDiscoalgorithm.
- 
          plot2D()plot3D(<MSnSet>)
- Plot organelle assignment data and results.
- 
          plot2Ds()
- Draw 2 data sets on one PCA plot
- 
          plotConsProfiles()
- Plot marker consenses profiles.
- 
          plotDist()
- Plots the distribution of features across fractions
- 
          plotEllipse()
- A function to plot probabiltiy ellipses on marker PCA plots to visualise and assess TAGM models.
- 
          plsdaClassification()
- plsda classification
- 
          plsdaOptimisation()
- plsda parameter optimisation
- 
          rfClassification()
- rf classification
- 
          rfOptimisation()
- svm parameter optimisation
- 
          sampleMSnSet()
- Extract a stratified sample of an MSnSet
- 
          showGOEvidenceCodes()getGOEvidenceCodes()
- GO Evidence Codes
- 
          spatial2D()
- Uncertainty plot in localisation probabilities
- 
          subsetMarkers()
- Subsets markers
- 
          svmClassification()
- svm classification
- 
          svmOptimisation()
- svm parameter optimisation
- 
          show(<MAPParams>)logPosteriors()tagmMapTrain()tagmMapPredict()
- The `logPosteriors` function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence.
- 
          tagmMcmcTrain()tagmMcmcPredict()tagmPredict()tagmMcmcProcess()
- Localisation of proteins using the TAGM MCMC method
- 
          testMSnSet()
- Create a stratified 'test' MSnSet
- 
          testMarkers()
- Tests marker class sizes
- 
          thetas()
- Draw matrix of thetas to test
- 
          undocumentedgetParams,ClustRegRes-methodlevelPlot,ClustRegRes-methodplot,ClustRegRes,missing-methodshow,ClustRegRes-method
- Undocumented/unexported entries
- 
          zerosInBinMSnSet()
- Compute the number of non-zero values in each marker classes