Skip to contents
-
class:AnnotationParams
AnnotationParams
AnnotationParams-class
show,AnnotationParams-method
AnnotationParams
setAnnotationParams
getAnnotationParams
dunkley2006params
andy2011params
- Class
"AnnotationParams"
-
ClustDist
class:ClustDist
ClustDist-class
plot,ClustDist,MSnSet-method
show,ClustDist-method
- Class
"ClustDist"
-
ClustDistList
class:ClustDistList
ClustDistList-class
plot,ClustDistList,missing-method
show,ClustDistList-method
[,ClustDistList,ANY,ANY,ANY-method
[,ClustDistList,ANY,missing,missing-method
[[,ClustDistList,ANY,ANY-method
[[,ClustDistList,ANY,missing-method
length,ClustDistList-method
names,ClustDistList-method
names
lapply,ClustDistList-method
sapply,ClustDistList-method
- Storing multiple ClustDist instances
-
GenRegRes
ThetaRegRes
class:GenRegRes
class:ThetaRegRes
GenRegRes-class
ThetaRegRes-class
getF1Scores
getF1Scores,GenRegRes-method
getF1Scores,ThetaRegRes-method
f1Count
f1Count,GenRegRes-method
f1Count,ThetaRegRes-method
getParams
getParams,GenRegRes-method
getParams,ThetaRegRes-method
getRegularisedParams
getRegularisedParams,GenRegRes-method
getRegularizedParams
getRegularizedParams,GenRegRes-method
getSeed
getSeed,GenRegRes-method
getWarnings
getWarnings,GenRegRes-method
levelPlot
levelPlot,GenRegRes-method
plot,GenRegRes,missing-method
plot,ThetaRegRes,missing-method
show,GenRegRes-method
show,ThetaRegRes-method
combineThetaRegRes
favourPrimary
- Class
"GenRegRes"
and "ThetaRegRes"
-
chains()
show(<MCMCParams>)
show(<ComponentParam>)
show(<MCMCChain>)
length(<MCMCChains>)
length(<MCMCParams>)
`[[`(<MCMCChains>,<ANY>,<ANY>)
`[[`(<MCMCParams>,<ANY>,<ANY>)
`[`(<MCMCChains>,<ANY>,<ANY>,<ANY>)
`[`(<MCMCParams>,<ANY>,<ANY>,<ANY>)
show(<MCMCChains>)
- Instrastructure to store and process MCMC results
-
MLearn,formula,MSnSet,learnerSchema,numeric-method
MLearn,formula,MSnSet,learnerSchema,xvalSpec-method
MLearn,formula,MSnSet,clusteringSchema,missing-method
MSnSetMLean
MLearnMSnSet
- The
MLearn
interface for machine learning
-
MartInstance-class
MartInstance
show,MartInstance-method
MartInstanceList-class
MartInstanceList
as.data.frame.MartInstanceList
as.data.frame.MartInstance
[,MartInstanceList-method
[,MartInstanceList,ANY,ANY-method
[,MartInstanceList,ANY,ANY,ANY-method
[[,MartInstanceList-method
[[,MartInstanceList,ANY,ANY-method
sapply,MartInstanceList-method
sapply,MartInstanceList,ANY-method
lapply,MartInstanceList-method
lapply,MartInstanceList,ANY-method
nDatasets
filterAttrs
getMartInstanceList
getMartTab
getFilterList
- Class
"MartInstance"
-
QSep-class
class::QSep
QSep
show,QSep-method
summary,QSep-method
names,QSep-method
names
plot,QSep-method
plot,QSep,missing-method
levelPlot,QSep-method
qsep
- Quantify resolution of a spatial proteomics experiment
-
SpatProtVis()
- Class
SpatProtVis
-
addGoAnnotations()
- Add GO annotations
-
addLegend()
- Adds a legend
-
addMarkers()
- Adds markers to the data
-
checkFeatureNamesOverlap()
- Check feature names overlap
-
checkFvarOverlap()
- Compare a feature variable overlap
-
chi2
chi2-methods
chi2,matrix,matrix-method
chi2,matrix,numeric-method
chi2,numeric,matrix-method
chi2,numeric,numeric-method
- The PCP 'chi square' method
-
classWeights()
- Calculate class weights
-
clustDist()
- Pairwise Distance Computation for Protein Information Sets
-
empPvalues()
- Estimate empirical p-values for \(Chi^2\) protein correlations.
-
fDataToUnknown()
- Update a feature variable
-
filterBinMSnSet()
- Filter a binary MSnSet
-
filterMaxMarkers()
- Removes class/annotation information from a matrix of candidate markers that appear in the
fData
.
-
filterMinMarkers()
- Removes class/annotation information from a matrix of candidate markers that appear in the
fData
.
-
filterZeroCols()
filterZeroRows()
- Remove 0 columns/rows
-
getGOFromFeatures()
- Retrieve GO terms for feature names
-
getMarkerClasses()
- Returns the organelle classes in an 'MSnSet'
-
getMarkers()
- Get the organelle markers in an
MSnSet
-
getNormDist()
- Extract Distances from a
"ClustDistList"
object
-
getPredictions()
- Returns the predictions in an 'MSnSet'
-
setLisacol()
getLisacol()
getOldcol()
setOldcol()
getStockcol()
setStockcol()
getStockpch()
setStockpch()
getUnknowncol()
setUnknowncol()
getUnknownpch()
setUnknownpch()
- Manage default colours and point characters
-
goIdToTerm()
goTermToId()
flipGoTermId()
prettyGoTermId()
- Convert GO ids to/from terms
-
highlightOnPlot()
highlightOnPlot3D()
- Highlight features of interest on a spatial proteomics plot
-
knnClassification()
- knn classification
-
knnOptimisation()
- knn parameter optimisation
-
knntlClassification()
- knn transfer learning classification
-
knntlOptimisation()
- theta parameter optimisation
-
ksvmClassification()
- ksvm classification
-
ksvmOptimisation()
- ksvm parameter optimisation
-
makeGoSet()
- Creates a GO feature
MSnSet
-
markerMSnSet()
unknownMSnSet()
- Extract marker/unknown subsets
-
mrkVecToMat()
mrkMatToVec()
mrkMatAndVec()
showMrkMat()
isMrkMat()
isMrkVec()
mrkEncoding()
- Create a marker vector or matrix.
-
mcmc_get_outliers()
mcmc_get_meanComponent()
mcmc_get_meanoutliersProb()
geweke_test()
mcmc_pool_chains()
mcmc_burn_chains()
mcmc_thin_chains()
plot(<MCMCParams>,<character>)
- Number of outlier at each iteration of MCMC
-
minMarkers()
- Creates a reduced marker variable
-
mixing_posterior_check()
- Model calibration plots
-
move2Ds()
- Displays a spatial proteomics animation
-
mrkConsProfiles()
- Marker consensus profiles
-
mrkHClust()
- Draw a dendrogram of subcellular clusters
-
nbClassification()
- nb classification
-
nbOptimisation()
- nb paramter optimisation
-
nicheMeans2D()
- Uncertainty plot organelle means
-
nndist-methods
nndist,matrix,matrix-method
nndist,matrix,missing-method
nndist,MSnSet,missing-method
nndist
- Nearest neighbour distances
-
nnetClassification()
- nnet classification
-
nnetOptimisation()
- nnet parameter optimisation
-
orderGoAnnotations()
- Orders annotation information
-
orgQuants()
- Returns organelle-specific quantile scores
-
pRolocmarkers()
- Organelle markers
-
perTurboClassification()
- perTurbo classification
-
perTurboOptimisation()
- PerTurbo parameter optimisation
-
phenoDisco()
- Runs the
phenoDisco
algorithm.
-
plot2D()
plot3D(<MSnSet>)
- Plot organelle assignment data and results.
-
plot2Ds()
- Draw 2 data sets on one PCA plot
-
plotConsProfiles()
- Plot marker consenses profiles.
-
plotDist()
- Plots the distribution of features across fractions
-
plotEllipse()
- A function to plot probabiltiy ellipses on marker PCA plots to visualise and assess TAGM models.
-
plsdaClassification()
- plsda classification
-
plsdaOptimisation()
- plsda parameter optimisation
-
rfClassification()
- rf classification
-
rfOptimisation()
- svm parameter optimisation
-
sampleMSnSet()
- Extract a stratified sample of an
MSnSet
-
showGOEvidenceCodes()
getGOEvidenceCodes()
- GO Evidence Codes
-
spatial2D()
- Uncertainty plot in localisation probabilities
-
subsetMarkers()
- Subsets markers
-
svmClassification()
- svm classification
-
svmOptimisation()
- svm parameter optimisation
-
show(<MAPParams>)
logPosteriors()
tagmMapTrain()
tagmMapPredict()
- The `logPosteriors` function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence.
-
tagmMcmcTrain()
tagmMcmcPredict()
tagmPredict()
tagmMcmcProcess()
- Localisation of proteins using the TAGM MCMC method
-
testMSnSet()
- Create a stratified 'test'
MSnSet
-
testMarkers()
- Tests marker class sizes
-
thetas()
- Draw matrix of thetas to test
-
undocumented
getParams,ClustRegRes-method
levelPlot,ClustRegRes-method
plot,ClustRegRes,missing-method
show,ClustRegRes-method
- Undocumented/unexported entries
-
zerosInBinMSnSet()
- Compute the number of non-zero values in each marker classes