Skip to contents

All functions

class:AnnotationParams AnnotationParams AnnotationParams-class show,AnnotationParams-method AnnotationParams setAnnotationParams getAnnotationParams dunkley2006params andy2011params
Class "AnnotationParams"
ClustDist class:ClustDist ClustDist-class plot,ClustDist,MSnSet-method show,ClustDist-method
Class "ClustDist"
ClustDistList class:ClustDistList ClustDistList-class plot,ClustDistList,missing-method show,ClustDistList-method [,ClustDistList,ANY,ANY,ANY-method [,ClustDistList,ANY,missing,missing-method [[,ClustDistList,ANY,ANY-method [[,ClustDistList,ANY,missing-method length,ClustDistList-method names,ClustDistList-method names lapply,ClustDistList-method sapply,ClustDistList-method
Storing multiple ClustDist instances
GenRegRes ThetaRegRes class:GenRegRes class:ThetaRegRes GenRegRes-class ThetaRegRes-class getF1Scores getF1Scores,GenRegRes-method getF1Scores,ThetaRegRes-method f1Count f1Count,GenRegRes-method f1Count,ThetaRegRes-method getParams getParams,GenRegRes-method getParams,ThetaRegRes-method getRegularisedParams getRegularisedParams,GenRegRes-method getRegularizedParams getRegularizedParams,GenRegRes-method getSeed getSeed,GenRegRes-method getWarnings getWarnings,GenRegRes-method levelPlot levelPlot,GenRegRes-method plot,GenRegRes,missing-method plot,ThetaRegRes,missing-method show,GenRegRes-method show,ThetaRegRes-method combineThetaRegRes favourPrimary
Class "GenRegRes" and "ThetaRegRes"
chains() show(<MCMCParams>) show(<ComponentParam>) show(<MCMCChain>) length(<MCMCChains>) length(<MCMCParams>) `[[`(<MCMCChains>,<ANY>,<ANY>) `[[`(<MCMCParams>,<ANY>,<ANY>) `[`(<MCMCChains>,<ANY>,<ANY>,<ANY>) `[`(<MCMCParams>,<ANY>,<ANY>,<ANY>) show(<MCMCChains>)
Instrastructure to store and process MCMC results
MLearn,formula,MSnSet,learnerSchema,numeric-method MLearn,formula,MSnSet,learnerSchema,xvalSpec-method MLearn,formula,MSnSet,clusteringSchema,missing-method MSnSetMLean MLearnMSnSet
The MLearn interface for machine learning
MartInstance-class MartInstance show,MartInstance-method MartInstanceList-class MartInstanceList as.data.frame.MartInstanceList as.data.frame.MartInstance [,MartInstanceList-method [,MartInstanceList,ANY,ANY-method [,MartInstanceList,ANY,ANY,ANY-method [[,MartInstanceList-method [[,MartInstanceList,ANY,ANY-method sapply,MartInstanceList-method sapply,MartInstanceList,ANY-method lapply,MartInstanceList-method lapply,MartInstanceList,ANY-method nDatasets filterAttrs getMartInstanceList getMartTab getFilterList
Class "MartInstance"
QSep-class class::QSep QSep show,QSep-method summary,QSep-method names,QSep-method names plot,QSep-method plot,QSep,missing-method levelPlot,QSep-method qsep
Quantify resolution of a spatial proteomics experiment
SpatProtVis()
Class SpatProtVis
addGoAnnotations()
Add GO annotations
addLegend()
Adds a legend
addMarkers()
Adds markers to the data
checkFeatureNamesOverlap()
Check feature names overlap
checkFvarOverlap()
Compare a feature variable overlap
chi2 chi2-methods chi2,matrix,matrix-method chi2,matrix,numeric-method chi2,numeric,matrix-method chi2,numeric,numeric-method
The PCP 'chi square' method
classWeights()
Calculate class weights
clustDist()
Pairwise Distance Computation for Protein Information Sets
empPvalues()
Estimate empirical p-values for \(Chi^2\) protein correlations.
fDataToUnknown()
Update a feature variable
filterBinMSnSet()
Filter a binary MSnSet
filterMaxMarkers()
Removes class/annotation information from a matrix of candidate markers that appear in the fData.
filterMinMarkers()
Removes class/annotation information from a matrix of candidate markers that appear in the fData.
filterZeroCols() filterZeroRows()
Remove 0 columns/rows
getGOFromFeatures()
Retrieve GO terms for feature names
getMarkerClasses()
Returns the organelle classes in an 'MSnSet'
getMarkers()
Get the organelle markers in an MSnSet
getNormDist()
Extract Distances from a "ClustDistList" object
getPredictions()
Returns the predictions in an 'MSnSet'
setLisacol() getLisacol() getOldcol() setOldcol() getStockcol() setStockcol() getStockpch() setStockpch() getUnknowncol() setUnknowncol() getUnknownpch() setUnknownpch()
Manage default colours and point characters
goIdToTerm() goTermToId() flipGoTermId() prettyGoTermId()
Convert GO ids to/from terms
highlightOnPlot() highlightOnPlot3D()
Highlight features of interest on a spatial proteomics plot
knnClassification()
knn classification
knnOptimisation()
knn parameter optimisation
knntlClassification()
knn transfer learning classification
knntlOptimisation()
theta parameter optimisation
ksvmClassification()
ksvm classification
ksvmOptimisation()
ksvm parameter optimisation
makeGoSet()
Creates a GO feature MSnSet
markerMSnSet() unknownMSnSet()
Extract marker/unknown subsets
mrkVecToMat() mrkMatToVec() mrkMatAndVec() showMrkMat() isMrkMat() isMrkVec() mrkEncoding()
Create a marker vector or matrix.
mcmc_get_outliers() mcmc_get_meanComponent() mcmc_get_meanoutliersProb() geweke_test() mcmc_pool_chains() mcmc_burn_chains() mcmc_thin_chains() plot(<MCMCParams>,<character>)
Number of outlier at each iteration of MCMC
minMarkers()
Creates a reduced marker variable
mixing_posterior_check()
Model calibration plots
move2Ds()
Displays a spatial proteomics animation
mrkConsProfiles()
Marker consensus profiles
mrkHClust()
Draw a dendrogram of subcellular clusters
nbClassification()
nb classification
nbOptimisation()
nb paramter optimisation
nicheMeans2D()
Uncertainty plot organelle means
nndist-methods nndist,matrix,matrix-method nndist,matrix,missing-method nndist,MSnSet,missing-method nndist
Nearest neighbour distances
nnetClassification()
nnet classification
nnetOptimisation()
nnet parameter optimisation
orderGoAnnotations()
Orders annotation information
orgQuants()
Returns organelle-specific quantile scores
pRolocmarkers()
Organelle markers
perTurboClassification()
perTurbo classification
perTurboOptimisation()
PerTurbo parameter optimisation
phenoDisco()
Runs the phenoDisco algorithm.
plot2D() plot3D(<MSnSet>)
Plot organelle assignment data and results.
plot2Ds()
Draw 2 data sets on one PCA plot
plotConsProfiles()
Plot marker consenses profiles.
plotDist()
Plots the distribution of features across fractions
plotEllipse()
A function to plot probabiltiy ellipses on marker PCA plots to visualise and assess TAGM models.
plsdaClassification()
plsda classification
plsdaOptimisation()
plsda parameter optimisation
rfClassification()
rf classification
rfOptimisation()
svm parameter optimisation
sampleMSnSet()
Extract a stratified sample of an MSnSet
showGOEvidenceCodes() getGOEvidenceCodes()
GO Evidence Codes
spatial2D()
Uncertainty plot in localisation probabilities
subsetMarkers()
Subsets markers
svmClassification()
svm classification
svmOptimisation()
svm parameter optimisation
show(<MAPParams>) logPosteriors() tagmMapTrain() tagmMapPredict()
The `logPosteriors` function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence.
tagmMcmcTrain() tagmMcmcPredict() tagmPredict() tagmMcmcProcess()
Localisation of proteins using the TAGM MCMC method
testMSnSet()
Create a stratified 'test' MSnSet
testMarkers()
Tests marker class sizes
thetas()
Draw matrix of thetas to test
undocumented getParams,ClustRegRes-method levelPlot,ClustRegRes-method plot,ClustRegRes,missing-method show,ClustRegRes-method
Undocumented/unexported entries
zerosInBinMSnSet()
Compute the number of non-zero values in each marker classes