Class "GenRegRes" and "ThetaRegRes"
      GenRegRes-class.RdRegularisation framework containers.
Objects from the Class
Object of this class are created with the respective regularisation
  function: knnOptimisation,
  svmOptimisation, plsdaOptimisation,
  knntlOptimisation, ...
Slots
- algorithm:
- Object of class - "character"storing the machine learning algorithm name.
- hyperparameters:
- Object of class - "list"with the respective algorithm hyper-parameters tested.
- design:
- Object of class - "numeric"describing the cross-validation design, the test data size and the number of replications.
- log:
- Object of class - "list"with warnings thrown during the hyper-parameters regularisation.
- seed:
- Object of class - "integer"with the random number generation seed.
- results:
- Object of class - "matrix"of dimenstions- times(see- design) by number of hyperparameters + 1 storing the macro F1 values for the respective best hyper-parameters for each replication.
- f1Matrices:
- Object of class - "list"with respective- timescross-validation F1 matrices.
- cmMatrices:
- Object of class - "list"with respective- timescontingency matrices.
- testPartitions:
- Object of class - "list"with respective- timestest partitions.
- datasize:
- Object of class - "list"with details about the respective inner and outter training and testing data sizes.
Only in ThetaRegRes:
- predictions:
- A - listof predictions for the optimisation iterations.
- otherWeights:
- Alternative best theta weigts: a vector per iterations, - NULLif no other best weights were found.
Methods
- getF1Scores
- Returns a matrix of F1 scores for the optimisation parameters. 
- f1Count
- signature(object = "GenRegRes", t = "numeric")and- signature(object = "ThetaRegRes", t = "numeric"): Constructs a table of all possible parameter combination and count how many have an F1 scores greater or equal than- t. When- tis missing (default), the best F1 score is used. This method is useful in conjunctin with- plot.
- getParams
- 
Returns the best parameters. It is however strongly recommended to inspect the optimisation results. For a ThetaRegResoptimisation result, the method to chose the best parameters can be"median"(default) or"mean"(the median or mean of the best weights is chosen),"max"(the first weights with the highest macro-F1 score, considering that multiple max scoring combinations are possible) or"count"(the observed weight that get the maximum number of observations, seef1Count). ThefavourPargument can be used to prioritise weights that favour the primary data (i.e. heigh weights). SeefavourPrimarybelow.
- getSeed
- Returns the seed used for the optimisation run. 
- getWarnings
- signature(object = "GenRegRes"): Returns a vector of recorded warnings.
- levelPlot
- signature(object = "GenRegRes"): Plots a heatmap of of the optimisation results. Only for- "GenRegRes"instances.
- plot
- Plots the optisisation results. 
- show
- Shows the object. 
Other functions
Only for ThetaRegRes:
- combineThetaRegRes(object)
- Takes a - listof- ThetaRegResinstances to be combined and returnes a new- ThetaRegResinstance.
- favourPrimary(primary, auxiliary, object, verbose = TRUE)
- Takes the - primaryand- auxiliarydata sources (two- MSnSetinstances) and a- ThetaRegResobject and returns and updated- ThetaRegResinstance containing best parameters/weigths (see the- getParamsfunction) favouring the primary data when multiple best theta weights are available.
Examples
showClass("GenRegRes")
#> Class "GenRegRes" [package "pRoloc"]
#> 
#> Slots:
#>                                                                       
#> Name:        algorithm hyperparameters          design             log
#> Class:       character            list         numeric            list
#>                                                                       
#> Name:             seed         results      f1Matrices      cmMatrices
#> Class:         integer          matrix            list            list
#>                                       
#> Name:   testPartitions        datasize
#> Class:            list            list
#> 
#> Known Subclasses: "ThetaRegRes"
showClass("ThetaRegRes")
#> Class "ThetaRegRes" [package "pRoloc"]
#> 
#> Slots:
#>                                                                       
#> Name:      predictions    otherWeights       algorithm hyperparameters
#> Class:            list            list       character            list
#>                                                                       
#> Name:           design             log            seed         results
#> Class:         numeric            list         integer          matrix
#>                                                                       
#> Name:       f1Matrices      cmMatrices  testPartitions        datasize
#> Class:            list            list            list            list
#> 
#> Extends: "GenRegRes"