Produces a pca plot with spatial variation in localisation probabilities
Usage
spatial2D(
object,
dims = c(1, 2),
cov.function = fields::wendland.cov,
theta = 1,
derivative = 2,
k = 1,
breaks = c(0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7),
aspect = 0.5
)
Arguments
- object
A valid object of class
MSnset
with mcmc prediction results fromtagmMCMCpredict
- dims
The PCA dimension in which to project he data, default is
c(1,2)
- cov.function
The covariance function used default is wendland.cov. See
fields
package.- theta
A hyperparameter to the covariance function. See
fields
package. Default is 1.- derivative
The number of derivative of the wendland kernel. See
fields
package. Default is 2.- k
A hyperparamter to the covariance function. See
fields
package. Default is 1.- breaks
Probability values at which to draw the contour bands. Default is
c(0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7)
- aspect
A argument to change the plotting aspect of the PCA
Value
Used for side effect of producing plot. Invisibily returns an ggplot object that can be further manipulated
Examples
if (FALSE) { # \dontrun{
library("pRolocdata")
data("tan2009r1")
tanres <- tagmMcmcTrain(object = tan2009r1)
tanres <- tagmMcmcProcess(tanres)
tan2009r1 <- tagmMcmcPredict(object = tan2009r1, params = tanres, probJoint = TRUE)
spatial2D(object = tan2009r1)
} # }