Produces a pca plot with spatial variation in localisation probabilities
Usage
spatial2D(
  object,
  dims = c(1, 2),
  cov.function = fields::wendland.cov,
  theta = 1,
  derivative = 2,
  k = 1,
  breaks = c(0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7),
  aspect = 0.5
)Arguments
- object
- A valid object of class - MSnsetwith mcmc prediction results from- tagmMCMCpredict
- dims
- The PCA dimension in which to project he data, default is - c(1,2)
- cov.function
- The covariance function used default is wendland.cov. See - fieldspackage.
- theta
- A hyperparameter to the covariance function. See - fieldspackage. Default is 1.
- derivative
- The number of derivative of the wendland kernel. See - fieldspackage. Default is 2.
- k
- A hyperparamter to the covariance function. See - fieldspackage. Default is 1.
- breaks
- Probability values at which to draw the contour bands. Default is - c(0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7)
- aspect
- A argument to change the plotting aspect of the PCA 
Value
Used for side effect of producing plot. Invisibily returns an ggplot object that can be further manipulated
Examples
if (FALSE) { # \dontrun{
library("pRolocdata")
data("tan2009r1")
tanres <- tagmMcmcTrain(object = tan2009r1)
tanres <- tagmMcmcProcess(tanres)
tan2009r1 <- tagmMcmcPredict(object = tan2009r1, params = tanres, probJoint = TRUE)
spatial2D(object = tan2009r1)
} # }