The `logPosteriors` function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence.
Source:R/machinelearning-framework-map.R, R/machinelearning-functions-tagm-map.R
      tagm-map.RdThese functions implement the T augmented Gaussian mixture (TAGM) model for mass spectrometry-based spatial proteomics datasets using the maximum a posteriori (MAP) optimisation routine.
Usage
# S4 method for class 'MAPParams'
show(object)
logPosteriors(x)
tagmMapTrain(
  object,
  fcol = "markers",
  method = "MAP",
  numIter = 100,
  mu0 = NULL,
  lambda0 = 0.01,
  nu0 = NULL,
  S0 = NULL,
  beta0 = NULL,
  u = 2,
  v = 10,
  seed = NULL
)
tagmMapPredict(
  object,
  params,
  fcol = "markers",
  probJoint = FALSE,
  probOutlier = TRUE
)Arguments
- object
- An - MSnbase::MSnSetcontaining the spatial proteomics data to be passed to- tagmMapTrainand- tagmPredict.
- x
- An object of class `MAPParams`. 
- fcol
- The feature meta-data containing marker definitions. Default is - markers.
- method
- A - charachter()describing the inference method for the TAGM algorithm. Default is- "MAP".
- numIter
- The number of iterations of the expectation-maximisation algorithm. Default is 100. 
- mu0
- The prior mean. Default is - colMeansof the expression data.
- lambda0
- The prior shrinkage. Default is 0.01. 
- nu0
- The prior degreed of freedom. Default is - ncol(exprs(object)) + 2
- S0
- The prior inverse-wishary scale matrix. Empirical prior used by default. 
- beta0
- The prior Dirichlet distribution concentration. Default is 1 for each class. 
- u
- The prior shape parameter for Beta(u, v). Default is 2 
- v
- The prior shape parameter for Beta(u, v). Default is 10. 
- seed
- The optional random number generator seed. 
- params
- An instance of class - MAPParams, as generated by- tagmMapTrain().
- probJoint
- A - logical(1)indicating whether to return the joint probability matrix, i.e. the probability for all classes as a new- tagm.map.jointfeature variable.
- probOutlier
- A - logical(1)indicating whether to return the probability of being an outlier as a new- tagm.map.outlierfeature variable. A high value indicates that the protein is unlikely to belong to any annotated class (and is hence considered an outlier).
Value
tagmMapTrain returns an instance of class MAPParams().
tagmPredict returns an instance of class
MSnbase::MSnSet containing the localisation predictions as
a new tagm.map.allocation feature variable.
Details
The tagmMapTrain function generates the MAP parameters (object or class
MAPParams) based on an annotated quantitative spatial proteomics dataset
(object of class MSnbase::MSnSet). Both are then passed to the
tagmPredict function to predict the sub-cellular localisation of protein
of unknown localisation. See the pRoloc-bayesian vignette for details and
examples. In this implementation, if numerical instability is detected in
the covariance matrix of the data a small multiple of the identity is
added. A message is printed if this conditioning step is performed.
Slots
- method
- A - character()storing the TAGM method name.
- priors
- A - list()with the priors for the parameters
- seed
- An - integer()with the random number generation seed.
- posteriors
- A - list()with the updated posterior parameters and log-posterior of the model.
- datasize
- A - list()with details about size of data
References
A Bayesian Mixture Modelling Approach For Spatial Proteomics Oliver M Crook, Claire M Mulvey, Paul D. W. Kirk, Kathryn S Lilley, Laurent Gatto bioRxiv 282269; doi: https://doi.org/10.1101/282269
See also
The plotEllipse() function can be used to visualise
TAGM models on PCA plots with ellipses. The tagmMapTrain()
function to use the TAGM MAP method.