Tests if the marker class sizes are large enough for the parameter
optimisation scheme, i.e. the size is greater that xval + n
,
where the default xval
is 5 and n
is 2. If the test
is unsuccessful, a warning is thrown.
Arguments
- object
An instance of class
"MSnSet"
.- xval
The number cross-validation partitions. See the
xval
argument in the parameter optimisation function(s). Default is 5.- n
Number of additional examples.
- fcol
The name of the prediction column in the
featureData
slot. Default is"markers"
.- error
A
logical
specifying if an error should be thown, instead of a warning.
Value
If successfull, the test invisibly returns NULL
. Else,
it invisibly returns the names of the classes that have too few examples.
Details
In case the test indicates that a class contains too few examples,
it is advised to either add some or, if not possible, to remove
the class altogether (see minMarkers
)
as the parameter optimisation is likely to fail or, at least,
produce unreliable results for that class.
See also
getMarkers
and minMarkers
Examples
library("pRolocdata")
data(dunkley2006)
getMarkers(dunkley2006)
#> organelleMarkers
#> ER lumen ER membrane Golgi Mitochondrion PM
#> 14 45 28 55 46
#> Plastid Ribosome TGN unknown vacuole
#> 20 19 13 428 21
testMarkers(dunkley2006)
toosmall <- testMarkers(dunkley2006, xval = 15)
#> Warning: ER lumen, TGN have/has less than 17 markers.
toosmall
#> [1] "ER lumen" "TGN"
try(testMarkers(dunkley2006, xval = 15, error = TRUE))
#> Error in testMarkers(dunkley2006, xval = 15, error = TRUE) :
#> ER lumen, TGN have/has less than 17 markers.