The PCP 'chi square' method
chi2-methods.Rd
In the original protein correlation profiling (PCP), Andersen et al. use the peptide normalised profiles along gradient fractions and compared them with the reference profiles (or set of profiles) by computing \(Chi^2\) values, \(\frac{\sum (x_i - x_p)^2}{x_p}\), where \(x_i\) is the normalised value of the peptide in fraction i and \(x_p\) is the value of the marker (from Wiese et al., 2007). The protein \(Chi^2\) is then computed as the median of the peptide \(Chi^2\) values. Peptides and proteins with similar profiles to the markers will have small \(Chi^2\) values.
The chi2
methods implement this idea and compute such Chi^2
values for sets of proteins.
Methods
signature(x = "matrix", y = "matrix", method = "character", fun = "NULL", na.rm = "logical")
Compute
nrow(x)
timesnrow(y)
\(Chi^2\) values, for eachx
,y
feature pair. Method is one of"Andersen2003"
or"Wiese2007"
; the former (default) computed the \(Chi^2\) assum(y-x)^2/length(x)
, while the latter usessum((y-x)^2/x)
.na.rm
defines if missing values (NA
andNaN
) should be removed prior to summation.fun
defines how to summarise the \(Chi^2\) values; default,NULL
, does not combine the \(Chi^2\) values.signature(x = "matrix", y = "numeric", method = "character", na.rm = "logical")
Computes
nrow(x)
\(Chi^2\) values, for all the \((x_i, y)\) pairs. See above for the other arguments.signature(x = "numeric", y = "matrix", method = "character", na.rm = "logical")
Computes
nrow(y)
\(Chi^2\) values, for all the \((x, y_i)\) pairs. See above for the other arguments.signature(x = "numeric", y = "numeric", method = "character", na.rm = "logical")
Computes the \(Chi^2\) value for the \((x, y)\) pairs. See above for the other arguments.
References
Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P. et al., Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003, 426, 570 - 574.
Wiese, S., Gronemeyer, T., Ofman, R., Kunze, M. et al., Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol. Cell. Proteomics 2007, 6, 2045 - 2057.
Examples
mrk <- rnorm(6)
prot <- matrix(rnorm(60), ncol = 6)
chi2(mrk, prot, method = "Andersen2003")
#> [1] 1.889892 4.245629 3.462126 3.920920 1.775587 4.896485 3.378966 3.712108
#> [9] 3.825797 2.702991
chi2(mrk, prot, method = "Wiese2007")
#> [1] -3.159876 11.164487 -11.367923 2.059008 -2.893832 2.777984
#> [7] -10.243224 4.752001 5.091183 -1.412432
pepmark <- matrix(rnorm(18), ncol = 6)
pepprot <- matrix(rnorm(60), ncol = 6)
chi2(pepmark, pepprot)
#> [,1] [,2] [,3]
#> [1,] 1.1599707 0.8097051 2.1489121
#> [2,] 1.1419376 1.5022289 1.6690684
#> [3,] 0.9912393 2.6529197 0.9081877
#> [4,] 1.0178592 1.5370036 1.0208939
#> [5,] 2.0740377 5.3225284 2.2989775
#> [6,] 1.7693526 0.5850152 1.7361577
#> [7,] 1.7893898 1.9202860 1.4503931
#> [8,] 0.5207063 1.7531744 0.3803269
#> [9,] 0.5394268 1.1915734 0.8901226
#> [10,] 0.7455153 0.7556420 1.2791638
chi2(pepmark, pepprot, fun = sum)
#> [1] 4.118588 4.313235 4.552347 3.575757 9.695544 4.090525 5.160069 2.654208
#> [9] 2.621123 2.780321