Convenience accessor to the predicted feature localisation in an 'MSnSet'.
This function returns the predictions of an
MSnSet instance. As a side effect, it prints out a prediction table.
Arguments
- object
- An instance of class - "MSnSet".
- fcol
- The name of the prediction column in the - featureDataslot.
- scol
- The name of the prediction score column in the - featureDataslot. If missing, created by pasting '.scores' after- fcol.
- mcol
- The feature meta data column containing the labelled training data. 
- t
- The score threshold. Predictions with score < t are set to 'unknown'. Default is 0. It is also possible to define thresholds for each prediction class, in which case, - tis a named numeric with names exactly matching the unique prediction class names.
- verbose
- If - TRUE, a prediction table is printed and the predictions are returned invisibly. If- FALSE, the predictions are returned.
Value
An instance of class "MSnSet" with fcol.pred feature
variable storing the prediction results according to the chosen threshold.
See also
orgQuants for calculating organelle-specific
thresholds.
Examples
library("pRolocdata")
data(dunkley2006)
res <- svmClassification(dunkley2006, fcol = "pd.markers",
                         sigma = 0.1, cost = 0.5)
#> [1] "pd.markers"
fData(res)$svm[500:510]
#>  [1] Plastid     Plastid     ER membrane Ribosome    Ribosome    Ribosome   
#>  [7] Ribosome    Ribosome    Ribosome    Ribosome    Ribosome   
#> 9 Levels: ER lumen ER membrane Golgi Mitochondrion PM Plastid Ribosome ... vacuole
fData(res)$svm.scores[500:510]
#>  [1] 0.6593303 0.7701427 0.6752305 0.4882591 0.5751725 0.5766412 0.6376513
#>  [8] 0.6215169 0.5313678 0.6123313 0.6602089
getPredictions(res, fcol = "svm", t = 0) ## all predictions
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            16           188           101           101           125 
#>       Plastid      Ribosome           TGN       vacuole 
#>            52            59            17            30 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... svm.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed svm prediction (cost=0.5 sigma=0.1) Sat Nov 23 16:03:53 2024 
#> Added svm predictions according to global threshold = 0 Sat Nov 23 16:03:53 2024 
#>  MSnbase version: 1.17.12 
getPredictions(res, fcol = "svm", t = .9) ## single threshold 
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            14            56            28            55            46 
#>       Plastid      Ribosome           TGN       unknown       vacuole 
#>            20            19            13           417            21 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... svm.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed svm prediction (cost=0.5 sigma=0.1) Sat Nov 23 16:03:53 2024 
#> Added svm predictions according to global threshold = 0.9 Sat Nov 23 16:03:53 2024 
#>  MSnbase version: 1.17.12 
## 50% top predictions per class
ts <- orgQuants(res, fcol = "svm", t = .5)
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>     0.2995766     0.8368847     0.7805362     0.7484314     0.7302249 
#>       Plastid      Ribosome           TGN       vacuole 
#>     0.7746137     0.5428105     0.5276547     0.5704931 
getPredictions(res, fcol = "svm", t = ts)
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            15           117            65            78            86 
#>       Plastid      Ribosome           TGN       unknown       vacuole 
#>            36            39            15           212            26 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... svm.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed svm prediction (cost=0.5 sigma=0.1) Sat Nov 23 16:03:53 2024 
#> Added svm predictions according to thresholds: ER lumen = 0.30, ER membrane = 0.84, Golgi = 0.78, Mitochondrion = 0.75, PM = 0.73, Plastid = 0.77, Ribosome = 0.54, TGN = 0.53, vacuole = 0.57 Sat Nov 23 16:03:53 2024 
#>  MSnbase version: 1.17.12