Skip to contents

Classification using the support vector machine algorithm.

Usage

ksvmClassification(
  object,
  assessRes,
  scores = c("prediction", "all", "none"),
  cost,
  fcol = "markers",
  ...
)

Arguments

object

An instance of class "MSnSet".

assessRes

An instance of class "GenRegRes", as generated by ksvmOptimisation.

scores

One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.

cost

If assessRes is missing, a cost must be provided.

fcol

The feature meta-data containing marker definitions. Default is markers.

...

Additional parameters passed to ksvm from package kernlab.

Value

An instance of class "MSnSet" with ksvm and ksvm.scores feature variables storing the classification results and scores respectively.

Author

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
## reducing parameter search space and iterations 
params <- ksvmOptimisation(dunkley2006, cost = 2^seq(-1,4,5), times = 3)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=====                                                                 |   7%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |===================                                                   |  27%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |===================================================                   |  73%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |=============================================================         |  87%
  |                                                                            
  |=================================================================     |  93%
  |                                                                            
  |======================================================================| 100%
params
#> Object of class "GenRegRes"
#> Algorithm: ksvm 
#> Hyper-parameters:
#>  cost: 0.5 16
#> Design:
#>  Replication: 3 x 5-fold X-validation
#>  Partitioning: 0.2/0.8 (test/train)
#> Results
#>  macro F1:
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>  0.9506  0.9515  0.9523  0.9676  0.9762  1.0000 
#>  best cost: 0.5 16   
plot(params)

f1Count(params)
#> 
#> 16 
#>  1 
levelPlot(params)

getParams(params)
#> cost 
#>   16 
res <- ksvmClassification(dunkley2006, params)
#> [1] "markers"
getPredictions(res, fcol = "ksvm")
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            18           188           126           124            71 
#>       Plastid      Ribosome           TGN       vacuole 
#>            54            19            68            21 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... ksvm.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed ksvm prediction (cost=16) Sat Nov 23 16:04:10 2024 
#> Added ksvm predictions according to global threshold = 0 Sat Nov 23 16:04:10 2024 
#>  MSnbase version: 1.17.12 
getPredictions(res, fcol = "ksvm", t = 0.75)
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            14           158            66            55            46 
#>       Plastid      Ribosome           TGN       unknown       vacuole 
#>            20            19            13           277            21 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... ksvm.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed ksvm prediction (cost=16) Sat Nov 23 16:04:10 2024 
#> Added ksvm predictions according to global threshold = 0.75 Sat Nov 23 16:04:10 2024 
#>  MSnbase version: 1.17.12 
plot2D(res, fcol = "ksvm")