Classification using the random forest algorithm.
Usage
rfClassification(
  object,
  assessRes,
  scores = c("prediction", "all", "none"),
  mtry,
  fcol = "markers",
  ...
)Arguments
- object
- An instance of class - "MSnSet".
- assessRes
- An instance of class - "GenRegRes", as generated by- rfOptimisation.
- scores
- One of - "prediction",- "all"or- "none"to report the score for the predicted class only, for all classes or none.
- mtry
- If - assessResis missing, a- mtrymust be provided.
- fcol
- The feature meta-data containing marker definitions. Default is - markers.
- ...
- Additional parameters passed to - randomForestfrom package- randomForest.
Value
An instance of class "MSnSet" with
    rf and rf.scores feature variables storing the
    classification results and scores respectively.
Examples
library(pRolocdata)
data(dunkley2006)
## reducing parameter search space and iterations 
params <- rfOptimisation(dunkley2006, mtry = c(2, 5, 10),  times = 3)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=====                                                                 |   7%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |===================                                                   |  27%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |===================================================                   |  73%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |=============================================================         |  87%
  |                                                                            
  |=================================================================     |  93%
  |                                                                            
  |======================================================================| 100%
params
#> Object of class "GenRegRes"
#> Algorithm: randomForest 
#> Hyper-parameters:
#>  mtry: 2 5 10
#> Design:
#>  Replication: 3 x 5-fold X-validation
#>  Partitioning: 0.2/0.8 (test/train)
#> Results
#>  macro F1:
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>  0.9650  0.9748  0.9846  0.9832  0.9923  1.0000 
#>  best mtry: 2   
plot(params)
 f1Count(params)
#> 
#> 2 
#> 1 
levelPlot(params)
f1Count(params)
#> 
#> 2 
#> 1 
levelPlot(params)
 getParams(params)
#> mtry 
#>    2 
res <- rfClassification(dunkley2006, params)
#> [1] "markers"
getPredictions(res, fcol = "rf")
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            19           179            97           103           135 
#>       Plastid      Ribosome           TGN       vacuole 
#>            51            51            20            34 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... rf.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed random forest prediction (mtry=2) Sat Nov 23 16:04:48 2024 
#> Added rf predictions according to global threshold = 0 Sat Nov 23 16:04:48 2024 
#>  MSnbase version: 1.17.12 
getPredictions(res, fcol = "rf", t = 0.75)
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            14           139            77            89            96 
#>       Plastid      Ribosome           TGN       unknown       vacuole 
#>            46            20            13           168            27 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... rf.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed random forest prediction (mtry=2) Sat Nov 23 16:04:48 2024 
#> Added rf predictions according to global threshold = 0.75 Sat Nov 23 16:04:48 2024 
#>  MSnbase version: 1.17.12 
plot2D(res, fcol = "rf")
getParams(params)
#> mtry 
#>    2 
res <- rfClassification(dunkley2006, params)
#> [1] "markers"
getPredictions(res, fcol = "rf")
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            19           179            97           103           135 
#>       Plastid      Ribosome           TGN       vacuole 
#>            51            51            20            34 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... rf.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed random forest prediction (mtry=2) Sat Nov 23 16:04:48 2024 
#> Added rf predictions according to global threshold = 0 Sat Nov 23 16:04:48 2024 
#>  MSnbase version: 1.17.12 
getPredictions(res, fcol = "rf", t = 0.75)
#> ans
#>      ER lumen   ER membrane         Golgi Mitochondrion            PM 
#>            14           139            77            89            96 
#>       Plastid      Ribosome           TGN       unknown       vacuole 
#>            46            20            13           168            27 
#> MSnSet (storageMode: lockedEnvironment)
#> assayData: 689 features, 16 samples 
#>   element names: exprs 
#> protocolData: none
#> phenoData
#>   sampleNames: M1F1A M1F4A ... M2F11B (16 total)
#>   varLabels: membrane.prep fraction replicate
#>   varMetadata: labelDescription
#> featureData
#>   featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)
#>   fvarLabels: assigned evidence ... rf.pred (11 total)
#>   fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#>   pubMedIds: 16618929 
#> Annotation:  
#> - - - Processing information - - -
#> Loaded on Thu Jul 16 22:53:08 2015. 
#> Normalised to sum of intensities. 
#> Added markers from  'mrk' marker vector. Thu Jul 16 22:53:08 2015 
#> Performed random forest prediction (mtry=2) Sat Nov 23 16:04:48 2024 
#> Added rf predictions according to global threshold = 0.75 Sat Nov 23 16:04:48 2024 
#>  MSnbase version: 1.17.12 
plot2D(res, fcol = "rf")
